Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^2\cdot\frac{1}{243}\cdot81^2\cdot\frac{1}{3^3}\)
\(=\frac{3^2}{3^3}\cdot\frac{81\cdot81}{81\cdot3}\)
\(=\frac{1}{3}\cdot\frac{27}{1}\)
\(=9=\left(\pm3\right)^2\)
\(a^m\cdot a^n=a^{m+n}\left(m,n\in N\right)\\ a^m:a^n=a^{m-n}\left(m>n;m,n\in N\right)\)
1) 3 CÁCH VIẾT: \(\frac{3}{-5};\frac{-3}{5};-\frac{3}{5}\)
2) - Số hữu tỉ lớn hơn 0 là số hữu tỉ dương.
- Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm.
- Số hữu tỉ 0 là số hữu tỉ ko âm cx ko dương.
3) Gíá trị tuyệt đối của một số hữu tỉ x là khoảng cách từ x đến điểm 0 trên trục số.
4) Lũy thừa bậc n của của một số hữu tỉ là tích của n thừa số bằng nhau
5) Nhân hai lũy thừa cùng cơ số : \(a^n.a^m=a^{n+m}\)
Chia hai lũy thừa cùng cơ số : \(a^n:a^m=a^{n-m}\left(n\ge m,a\ne0\right)\)
Lũy thừa của lũy thừa : \(\left(a^n\right)^m=a^{n.m}\)
Lũy thừa của một thương: \(\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}\left(b\ne0\right)\)
6) Tỉ số của hai số hữu tỉ là thương của phép chia a cho b.
VD : \(\frac{8}{2}\) = 4
7) Tỉ lệ thức là đẳng thức của hai tỉ số \(\frac{a}{b}=\frac{c}{d}\) ( b,c là trung tỉ , a,d là ngoại tỉ)
t/c : ad =bc=\(\frac{a}{b}=\frac{c}{d}\)
\(ad=bc=\frac{b}{a}=\frac{d}{c}\)
\(ad=bc=\frac{b}{d}=\frac{a}{c}\)
\(ad=bc=\frac{d}{b}=\frac{c}{a}\)
T/c của dãy tỉ số bằng nhau;\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a-c}{b-d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}=\frac{a-c-e}{b-d-f}=\frac{a-c+e}{b-d+f}\)
8) Số vô tỉ là số thập phân vô hạn ko tuần hoàn
vd : \(\sqrt{2}\),\(\sqrt{5}\),\(\sqrt{7}\),.................................
9) Số hữu tỉ và số vô tỉ đc gọi chung là số thực.
Trục số thực là trục số biểu diễn các số thực
10) Căn bậc hai của một số a ko âm là số x sao cho \(^{x^2}\) =a
1/ \(\frac{3}{5}=\frac{6}{10}=\frac{9}{15}=\frac{12}{20}\)
2/ Số hữu tỉ âm là các số khi biểu diễn trên trục số nằm bên trái hoặc bên dưới số 0; số hữu tỉ dương là số khi biểu diễn trên trục số nằm bên phải hoặc bên trên số 0.
số 0 không phải là số hữu tỉ âm cũng không phải là số hữu tỉ dương
3/ giá trị tuyệt đối của số hữu tỉ x được bỏ dấu âm
4/Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x
5/nhân 2 luỹ thừa cùng cơ số: \(2^2.2^3\)
chia 2 luỹ thừa cùng cơ số:\(2^2:2^3\)
luỹ thừa của 1 luỹ thừa:\(\left(2^2\right)^3\)
luỹ thừa của 1 tích: \(5.5=5^2\)
luỹ thừa của 1 thương:\(25:5=5^1\)
Ta có :
xn = x . x . x . .... . x
n thừa số x
=> ( xn )m = x . x . x . x . .... . x
m lần n thừa số x
= xn.m
–o0o–
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
Lũy thừa của không và một[sửa | sửa mã nguồn]
{\displaystyle 0^{n}=0\,}.
{\displaystyle 1^{n}=1\,}.
Lũy thừa với số mũ nguyên dương[sửa | sửa mã nguồn]
Trong trường hợp b = n là số nguyên dương, lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:
{\displaystyle a^{n}=\underbrace {a\times a\cdots \times a} _{n}}
Các tính chất quan trong nhất của lũy thừa với số mũ nguyên dương m, n là
{\displaystyle a^{m+n}=a^{m}\times a^{n}}
{\displaystyle a^{m-n}={\frac {a^{m}}{a^{n}}}} với mọi a ≠ 0
{\displaystyle (a^{m})^{n}=a^{mn}}
{\displaystyle a^{m^{n}}=a^{(m^{n})}}
{\displaystyle (a\times b)^{n}=a^{n}\times b^{n}}
{\displaystyle ({\frac {a}{b}})^{n}={\frac {a^{n}}{b^{n}}}}
Đặc biệt, ta có:
{\displaystyle a^{1}=a}
Trong khi các phép cộng và phép nhân có tính chất giao hoán, phép tính lũy thừa không có tính giao hoán.
Tương tự các phép cộng và nhân có tính kết hợp, còn phép tính lũy thừa thì không.. Khi không có dấu ngoặc, thứ tự tính của các lũy thừa là từ trên xuống, chứ không phải là từ dưới lên:
{\displaystyle a^{b^{c}}=a^{(b^{c})}\neq (a^{b})^{c}=a^{(b\cdot c)}=a^{b\cdot c}}
Lũy thừa với số mũ 0[sửa | sửa mã nguồn]
Lũy thừa với số mũ 0 của số a khác không được quy ước bằng 1.
{\displaystyle a^{0}=1}
Chứng minh:
{\displaystyle 1={\frac {a^{n}}{a^{n}}}=a^{n-n}=a^{0}}
Em học lớp 6 nên chỉ biết về lũy thừa. Công thức về căn số em chịu