Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=> \(BH=\dfrac{BC}{2}=3\left(cm\right)\)
nên AH=4(cm)
b: Ta có: AH là đường trung tuyến ứng với cạnh BC
mà G là trọng tâm của ΔABC
nên A,H,G thẳng hàng
c: XétΔABG và ΔACG có
AB=AC
AG chung
GB=GC
Do đó:ΔABG=ΔACG
Suy ra: \(\widehat{ABG}=\widehat{ACG}\)
1
Áp dụng định lí pi - ta -go , có
+)HB2+AH2=AB2
=>4+AH2=AB2(1)
+)HC2+AH2=AC2
=>64+AH2=AC2(2)
Ta có :CB=CH+HB=8+2=10 (cm) (3)
Từ 1,2 và 3 =>4+AH2+64+AH2=102=100
=>AH2.2=100-68=32
=>AH2=32:2=16=42
=>AH=4
Vậy AH = 4 cm
a) Vì trong tg cân, đường cao cũng là đường trung tuyến, trung trực, đường phân giác nên đường cao AH chính là đường trung tuyến ứng với cạnh BC trong tg ABC
\(\Rightarrow\) HB = HC = 1/2.BC = 1/2.6 = 3 (cm)
\(\Rightarrow\) \(AH^2=BA^2-HB^2=5^2-3^2=16\)
\(\Rightarrow\) AH = 4(cm)
b) Vì AH là đường trung tuyến ứng với cạnh BC của tg ABC nên trọng tâm G của tg ABC cũng thuộc đường cao AH
\(\Rightarrow\) A,G,H thẳng hàng