K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức 
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì => x^2 =1 (mod 8) 
x^2 =-1(mod 5) hoặc x^2=0(mod 5) 
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40 

28 tháng 7 2019

Với n = 0,7 thì BĐT đúng chăng?

15 tháng 3 2016

bạn tự nghĩ đi

Tra loi

Bn len google tra cho nhanh

Mk ns tht day

Hok tot Hien​​​​​

3 tháng 8 2016

Tôi cũng là của FC Real Madrid ở Hà Nam.

Chúng mình kết bạn nhé.hihi.

15 tháng 5 2017

cần gấp ko bn 

15 tháng 5 2017

có bạn. mai mk faj nộp r

12 tháng 11 2021

a: \(\Leftrightarrow2n^4-2n^3-n^3+n^2-n^2+n-2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{-1;1;2\right\}\)

hay \(n\in\left\{0;2;3\right\}\)

15 tháng 10 2017

\(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}......\dfrac{2n-1}{2n}=\dfrac{1.2.3.....\left(2n-1\right)}{2.3.4.....2n}=\dfrac{1}{2n}\)

Khi đó ta có điều cần chứng minh:

\(\dfrac{1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(n>\dfrac{1}{3}\right)\)

Hay

\(\dfrac{\sqrt{3n+1}}{2n\left(\sqrt{3n+1}\right)}\le\dfrac{2n}{2n\left(\sqrt{3n+1}\right)}\)

Hay \(\sqrt{3n+1}\le2n\)(luôn đúng)