Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{1}{3}\left(\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{3n}{6\left(3n+2\right)}=\dfrac{n}{6n+4}\)
\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}=\dfrac{1}{4}\left(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{3.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{n\left(n+2\right)}{3\left(2n+1\right)\left(2n+3\right)}\)
\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(\Rightarrow C=2019-\dfrac{1}{2019}\)
\(P=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}-...+\dfrac{1}{\sqrt{2n}-\sqrt{2n+1}}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}-\dfrac{\sqrt{3}+\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}+...+\dfrac{\sqrt{2n}+\sqrt{2n+1}}{\left(\sqrt{2n}-\sqrt{2n+1}\right)\left(\sqrt{2n}+\sqrt{2n+1}\right)}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}}{2-3}-\dfrac{\sqrt{3}+\sqrt{4}}{3-4}+\dfrac{\sqrt{4}+\sqrt{5}}{4-5}-...+\dfrac{\sqrt{2n}+\sqrt{2n+1}}{2n-2n-1}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2n}+\sqrt{2n+1}}{-1}\)
\(P=\dfrac{\sqrt{2}+\sqrt{2n+1}}{-1}\)
\(P=-\left(\sqrt{2}+\sqrt{2n+1}\right)\)
Mà: \(\sqrt{2}\) là số vô tỉ nên: \(-\left(\sqrt{2}+\sqrt{2n+1}\right)\) là số vô tỉ với mọi n
\(\Rightarrow\) P là số vô tỉ không phải là số hữu tỉ
Tìm n ∈ N để
a) \(\dfrac{2n^4-3n^2+n-2}{n-1}\) ∈ N (n≠1)
b) \(\dfrac{-3n^3+2n^2-n-2}{n+2}\) ∈ Z (n≠-2)
a: \(\Leftrightarrow2n^4-2n^3-n^3+n^2-n^2+n-2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{-1;1;2\right\}\)
hay \(n\in\left\{0;2;3\right\}\)
\(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}......\dfrac{2n-1}{2n}=\dfrac{1.2.3.....\left(2n-1\right)}{2.3.4.....2n}=\dfrac{1}{2n}\)
Khi đó ta có điều cần chứng minh:
\(\dfrac{1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(n>\dfrac{1}{3}\right)\)
Hay
\(\dfrac{\sqrt{3n+1}}{2n\left(\sqrt{3n+1}\right)}\le\dfrac{2n}{2n\left(\sqrt{3n+1}\right)}\)
Hay \(\sqrt{3n+1}\le2n\)(luôn đúng)