K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>căn 2x1=x2-1

=>2x1=x2^2-2x2+1

=>x2^2-2(x1+x2)+1=0

=>x2^2-2(2m+1)+1=0

=>x2^2=4m+2-1=4m+1

=>\(x_2=\pm\sqrt{4m+1}\)

=>\(x_1=2m+1\pm\sqrt{4m+1}\)

x1*x2=m^2-m

=>m^2-m=4m+1\(\pm2m+1\)

=>m^2-5m-1=\(\pm2m+1\)

TH1: m^2-5m-1=2m+1

=>m^2-7m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

TH2: m^2-5m-1=-2m-1

=>m^2-3m=0

=>m=0; m=3

25 tháng 10 2023

a: Sửa đề: PT x^2-2x-m-1=0

Khi m=2 thì Phương trình sẽ là:

x^2-2x-2-1=0

=>x^2-2x-3=0

=>(x-3)(x+1)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

b:

\(\text{Δ}=\left(-2\right)^2-4\left(-m-1\right)\)

\(=4+4m+4=4m+8\)

Để phương trình có hai nghiệm dương thì

\(\left\{{}\begin{matrix}4m+8>0\\2>0\\-m-1>0\end{matrix}\right.\Leftrightarrow-2< m< -1\)

\(\sqrt{x_1}+\sqrt{x_2}=2\)

=>\(x_1+x_2+2\sqrt{x_1x_2}=4\)

=>\(2+2\sqrt{-m-1}=4\)

=>\(2\sqrt{-m-1}=2\)

=>-m-1=1

=>-m=2

=>m=-2(loại)

19 tháng 7 2021

\(3-\sqrt{x}\) chưa chắc đã âm

thử x=4=>3-2=1>0

19 tháng 7 2021

Anh ơi cô em bảo âm ạ

10 tháng 6 2016

Bài 1. Phương trình \(x^2-\left(m+5\right)x+3m+6=0\)

a. \(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m+1\right)^2\ge0\)

Vậy phương trình luôn có nghiệm.

b. Gọi các nghiệm của phương trình là \(x_1;x_2\). Để các nghiệm của phương trình là độ dài của các cạnh góc vuông của tam giác vuông có độ dài cạnh huyền là 5 thì \(x_1^2+x_2^2=25\)

Theo Viet ta có \(\hept{\begin{cases}x_1+x_2=m+5\\x_1.x_2=3m+6\end{cases}}\)

 \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m+5\right)^2-2\left(3m+6\right)=m^2+4m+13=25\)

\(\Rightarrow m^2+4m-12=0\Rightarrow\orbr{\begin{cases}m=2\\m=-6\end{cases}}\)

Bài 2.

a. Để hai đồ thị có 1 điểm chung thì phương trình hoành độ giao điểm có 1 nghiệm duy nhất. 

Xét phương trình hoành độ giao điểm: \(-x^2=4x-m\Leftrightarrow x^2+4x-m=0\)

Để phương trình có 1 nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow2^2+m=0\Leftrightarrow m=-4\)

Bài 3. Phương trình \(x^2-5x+3m+1=0\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\left(-5\right)^2-4\left(3m+1\right)=21-12m>0\Leftrightarrow m< \frac{7}{4}\)

Theo Viet \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3m+1\end{cases}}\)

Vậy \(\left|x_1^2-x_2^2\right|=15\Leftrightarrow\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=225\Leftrightarrow\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]=225\)

\(\Leftrightarrow25\left[25-4\left(3m+1\right)\right]=225\Leftrightarrow21-12m=9\Leftrightarrow m=1\left(tmđk\right)\)

Vậy m = 1.

Chú ý nhớ kĩ định lý Viet nhé, đây là một phần quan trọng đó em. 

20 tháng 7 2021

cái này thì ko nhất thiết phải Cm nha bạn

Câu b kêu tìm x để B ko nhỏ hơn hoặc bằng A

Nghĩa là

\(\dfrac{4}{3-\sqrt{x}}>1\)

\(\Leftrightarrow\dfrac{4}{3-\sqrt{x}}-1>0\)

\(\Leftrightarrow\dfrac{4-\left(3-\sqrt{x}\right)}{3-\sqrt{x}}>0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{3-\sqrt{x}}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}+1>0\\3-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}+1< 0\left(VL\right)\\3-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Theo Đk ta có x≥0

Vậy 0≤x<9 thì B ko nhỏ hơn hoặc bằng A

20 tháng 7 2021

\(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1>0\)

Hiển nhiên nhé