K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

Ta dựng đường thẳng CD qua song song với AB, ta có:

          \(\widehat{ACD}\) = \(\widehat{A}\) = 400 (so le trong)

         \(\widehat{DCE}\)  + \(\widehat{ACD}\)  = \(\widehat{ACE}\) 

 ⇒ \(\widehat{DCE}\) = \(\widehat{ACE}\) - \(\widehat{ACD}\) = 1000 - 40 = 600

CD // AB ⇒ CD // EG 

 ⇒ \(\widehat{GEx}\) = \(\widehat{DCE}\) (hai góc đồng vị)

⇒  \(\widehat{GEx}\) = 600 (vì hai góc đồng vị)

 

 

 

 

   

 

 

a: \(\widehat{B}=\dfrac{180^0-80^0}{2}=50^0\)

b: Chiều dài là \(\sqrt{15^2-9^2}=12\left(dm\right)\)

12 tháng 3 2022

cảm ơn bạn nha^^

31 tháng 7 2015

M = 22010-(22009 + 22008+....+21+20

Đặt A =( 22009+22008+...21 +20)

Suy ra 2A = 22010+22009+22008+...22+2

Suy ra 2A-A = ( 22010+22009+22008+...+22+2) - (22009+ 22008+...+21+20)

Suy ra A= 22010-20

Suy ra M = 22010-A=22010 - 22010+20=1

Vậy M=1

Đúng nha

16 tháng 9 2017

tui biet cach lam rui

Bài 11: 

a) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBAD=ΔBED(Cạnh huyền-góc nhọn)

Suy ra: BA=BE(Hai cạnh tương ứng) và DA=DE(Hai cạnh tương ứng)

Ta có: BA=BE(cmt)

nên B nằm trên đường trung trực của AE(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(đpcm)

2 tháng 12 2021

ĐKXĐ : 2x \(\ge\)0 <=> x \(\ge\)0

| 7 + x | = 2x <=> \(\orbr{\begin{cases}7+x=2x\\7+x=-2x\end{cases}}\)

                     <=> \(\orbr{\begin{cases}x=7\\x=\frac{-7}{3}\end{cases}}\)( KTMĐK)

Vậy x = 7 

27 tháng 9 2021

\(a,\) Áp dụng t/c dtsbn:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{5x}{50}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\\ \Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{124}{62}=2\\ \Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=56\end{matrix}\right.\)

\(c,\) Áp dụng t/c dtsbn

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\\ \Rightarrow\left\{{}\begin{matrix}x=12\cdot\dfrac{3}{2}=18\\y=12\cdot\dfrac{4}{3}=16\\z=12\cdot\dfrac{5}{4}=15\end{matrix}\right.\)

\(d,\) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(xy=54\Rightarrow2k\cdot3k=54\Rightarrow k^2=9\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=9\\x=-6;y=-9\end{matrix}\right.\)

\(e,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\Rightarrow x=5k;y=3k\)

\(x^2-y^2=4\Rightarrow25k^2-9k^2=4\Rightarrow16k^2=4\Rightarrow k^2=\dfrac{1}{4}\\ \Rightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2};y=\dfrac{3}{2}\\x=-\dfrac{5}{2};y=-\dfrac{3}{2}\end{matrix}\right.\)

\(f,\) Áp dụng t/c dtsbn:

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)

\(\Rightarrow\left\{{}\begin{matrix}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+z=3x-1\\x+y+z=3y-1\\x+y+z=3z+2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3x-1=\dfrac{1}{2}\\3y-1=\dfrac{1}{2}\\3z+2=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\z=-\dfrac{1}{2}\end{matrix}\right.\)

Gọi số đo mỗi cạnh của tam giác lần lượt là x, y, z (đơn vị: m) (x, y, z \(\in\)N*)

Do mỗi cạnh của tam giác tỉ lệ với 4; 5; 8

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{8}\)

Chu vi hình tam giác là 34m

=> x + y + z = 34

Theo tính chất của dãy tỉ số bằng nhau.

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{4+5+8}=\frac{34}{17}=2\)

\(\frac{x}{4}=2\Rightarrow x=2.4=8\)

\(\frac{y}{5}=2\Rightarrow y=2.5=10\)

\(\frac{z}{8}=2\Rightarrow z=2.8=16\)

Vậy, độ dài mỗi cạnh của tam giác lần lượt là 8; 10; 16.

@Nghệ Mạt

#cua

10 tháng 12 2021

Gọi các cạnh của tam giác lần lượt là x1, x2, x3

Theo đề bài ta có: \(\frac{x_1}{4}\)\(\frac{x_2}{5}\)\(\frac{x_3}{8}\)\(\frac{34}{17}\)\(2\)

Do đó:

x= 2.4 = 6

x2 = 2.5 = 10

x3 = 2.8 = 16

Độ dài của các cạnh lần lượt là 6, 10, 16

15 tháng 1 2022

-15/19 + 36/35 - 4/19 + 34/35 = 1 nhé

/HT\ 

15 tháng 1 2022

TL:

-15/19+36/35-4/19+34/35=1

HT

25 tháng 9 2021

Kẻ Bz//Ax

Ta có: Ax//Bz

\(\Rightarrow\widehat{BAx}=\widehat{ABz}=30^0\)(so le trong)

\(\Rightarrow\widehat{zBC}=\widehat{ABC}-\widehat{BAx}=90^0-30^0=60^0\)

Ta có: \(\widehat{zBC}+\widehat{BCy}=60^0+120^0=180^0\)

Mà 2 góc này là 2 góc trong cùng phía

=> Bz//Cy

Mà Bz//Ax

=> Ax//Cy