K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

c34 nào v bạn

11 tháng 11 2021

Ảnh bị lỗi mới cập lại

13 tháng 10 2016

\(\sin^2x+\dfrac{3}{2}\cos2x + 5 = 0\)

\(\Leftrightarrow \sin^2x+\dfrac{3}{2}(1-2\sin^2x) + 5 = 0\)

\(\Leftrightarrow \sin^2x=\dfrac{13}{4}\)

Suy ra PT vô nghiệm.

17 tháng 2 2017

Cách khác chi tiết hơn

Ta đã biết \(\cos 2x = \cos^2 x -\sin^2 x = (1-\sin^2 x)-\sin^2 x = 1-2\sin^2 x\)

Vì vậy \(y = \sin^2 x +(1.5)(1-2\sin^2 x) + 5\)

\(\Rightarrow y = -2\sin^2 x + 6.5\). Bây giờ, khi \(\sin x\in [-1,1]\),\(\sin^2 x \in [0,1]\),vậy \(y \in[ 6,5;7,5]\)

Ta dễ dàng thấy \(y=0\) ko trong khoảng, vậy \(y=0\) ko phải là nghiệm cho \(x\)

15 tháng 11 2023

a: Δ: 2x-y-1=0; A(-1;2)

B là ảnh của A qua phép đối xứng trục Δ

=>Δ là đường trung trực của AB

=>Δ vuông góc AB tại trung điểm H của AB

Đặt (d): ax+by+c=0 là phương trình đường thẳng AB

Δ: 2x-y-1=0

=>(d): x+y+c=0

Thay x=-1 và y=2 vào (d), ta được:

c-1+2=0

=>c+1=0

=>c=-1

=>(d): x+y-1=0

Tọa độ H là:

\(\left\{{}\begin{matrix}2x-y-1=0\\x+y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=1\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=2\\x+y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=1-\dfrac{2}{3}=\dfrac{1}{3}\end{matrix}\right.\)

H là trung điểm của AB

=>\(\left\{{}\begin{matrix}x_B+x_A=2\cdot x_H\\y_B+y_A=2\cdot y_H\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_B-1=2\cdot\dfrac{2}{3}=\dfrac{4}{3}\\y_B+2=2\cdot\dfrac{1}{3}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B=\dfrac{4}{3}+1=\dfrac{7}{3}\\y_B=\dfrac{2}{3}-2=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy: B(7/3;-4/3)

b: (C): \(\left(x-1\right)^2+\left(y-2\right)^2=9\); Δ: 2x-y-1=0

=>R=3 và tâm I(1;2)

Gọi D là điểm đối xứng của I qua phép đối xứng trục Δ, gọi E là giao điểm của DI với trục Δ, (d1): ax+by+c=0 là phương trình đường thẳng DI

D đối xứng I qua phép đối xứng trục Δ

=>Δ là đường trung trực của DI

=>Δ vuông góc (d1) tại trung điểm E của DI

Δ: 2x-y-1=0

=>(d1): x+y+c=0

Thay x=1 và y=2 vào (d1), ta được:

c+1+2=0

=>c+3=0

=>c=-3

=>(d1): x+y-3=0

Tọa độ E là:

\(\left\{{}\begin{matrix}2x-y-1=0\\x+y-3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=1\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\x+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=3-\dfrac{4}{3}=\dfrac{5}{3}\end{matrix}\right.\)

E(4/3;5/3); I(1;2)

E là trung điểm của DI

=>\(\left\{{}\begin{matrix}x_D+x_I=2\cdot x_E\\y_D+y_I=2\cdot y_E\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_D+1=2\cdot\dfrac{4}{3}=\dfrac{8}{3}\\y_D+2=2\cdot\dfrac{5}{3}=\dfrac{10}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=\dfrac{5}{3}\\y_D=\dfrac{4}{3}\end{matrix}\right.\)

Phương trình đường tròn (T) là:

\(\left(x-\dfrac{5}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=9\)

15 tháng 11 2023

Bạn ghi đầy đủ đề đi bạn ơi

AH
Akai Haruma
Giáo viên
22 tháng 8 2019

Lời giải:
Đặt $2x=t$ thì bài toán trở thành tìm max, min của $y=3\sin t$ với $t\in [0;\pi]$

Với mọi $t\in [0;\pi]$ thì $\sin t\in [0;1]$ (cái này bạn có thể xem lại đồ thị hàm sin)

$\Rightarriw y=3\sin t\in [0;3]$ hay $y_{\min}=0; y_{\max}=3$