Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
Do \(AA'\perp\left(ABCD\right)\) (t/c hình hộp chữ nhật)
Mà \(AA'\in\left(ACC'A'\right)\)
\(\Rightarrow\left(ACC'A'\right)\perp\left(ABCD\right)\Rightarrow\) góc giữa (ACC'A') avf (ABCD) bằng 90 độ
b.
Từ H kẻ AH vuông góc BD (H thuộc BD)
Do \(AA'\perp\left(ABCD\right)\Rightarrow AA'\perp BD\)
\(\Rightarrow BD\perp\left(A'AH\right)\)
\(\Rightarrow\left\{{}\begin{matrix}BD\perp AH\\BD\perp A'H\end{matrix}\right.\)
Mà \(BD=\left(A'BD\right)\cap\left(ABCD\right)\Rightarrow\widehat{AHA'}\) là góc giữa (A'BD) và (ABCD)
\(AH=\dfrac{AB.AD}{\sqrt{AB^2+AD^2}}=\dfrac{bc}{\sqrt{b^2+c^2}}\)
\(\Rightarrow tan\widehat{AHA'}=\dfrac{AA'}{AH}=\dfrac{a\sqrt{b^2+c^2}}{bc}\)
7.
Kẻ \(AI\perp CM\Rightarrow\widehat{IAM}=\widehat{BCM}\) (góc có cạnh tương ứng vuông góc)
\(CM=\sqrt{BC^2+BM^2}=\sqrt{BC^2+\left(\dfrac{AB}{2}\right)^2}=2a\)
\(\Rightarrow AI=AM.cos\widehat{IAM}=\dfrac{AB}{2}.cos\widehat{BCM}=\dfrac{AB}{2}.\dfrac{BC}{CM}=\dfrac{a\sqrt{3}}{2}\)
b.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp CI\\CI\perp AI\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CI\perp\left(SAI\right)\Rightarrow\left\{{}\begin{matrix}CI\perp SI\\CI\perp AI\end{matrix}\right.\)
Mà \(CI=\left(SMC\right)\cap\left(ABC\right)\Rightarrow\widehat{SIA}\) là góc giữa (SMC) và (ABC)
\(tan\widehat{SIA}=\dfrac{SA}{AI}=\dfrac{4\sqrt{3}}{3}\Rightarrow\widehat{SIA}\approx66^035'\)
Với mọi \(x\in R\) ta có \(\left\{{}\begin{matrix}x+\pi\in R\\x-\pi\in R\end{matrix}\right.\)
\(f\left(x+\pi\right)=cos^2\left(x+\pi\right)-1=cos^2x-1=f\left(x\right)\)
\(\Rightarrow\) Hàm số đã cho là hàm tuần hoàn với chu kì \(T=\pi\)
Do A đối xứng C qua I, B đối xứng D qua I
\(\Rightarrow\) CD đối xứng AB qua I và BC đối xứng AD qua I
Hay CD là ảnh của AB qua phép đối xứng tâm I, BC là ảnh của AD qua phép đối xứng tâm I
Gọi \(M\left(x;y\right)\) là 1 điểm thuộc AB \(\Rightarrow2x-y=0\) (1)
M' là ảnh của M qua phép đối xứng tâm I \(\Rightarrow M'\in DC\)
\(\left\{{}\begin{matrix}x'=2.2-x\\y=2.2-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4-x'\\y=4-y'\end{matrix}\right.\) thế vào (1):
\(2\left(4-x'\right)-\left(4-y'\right)=0\Leftrightarrow-2x'+y'+4=0\Leftrightarrow2x'-y'-4=0\)
Hay pt CD có dạng: \(2x-y-4=0\)
Tương tự gọi \(N\left(x;y\right)\in AD\Rightarrow4x-3y=0\) (2)
N' là ảnh của N qua phép đối xứng tâm I
\(\Rightarrow\left\{{}\begin{matrix}x'=4-x\\y'=4-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4-x'\\y=4-y'\end{matrix}\right.\) thế vào (2):
\(4\left(4-x'\right)-3\left(4-y'\right)=0\) \(\Leftrightarrow-4x'+3y'+4=0\Leftrightarrow4x'-3y'-4=0\)
Hay pt BC: \(4x-3y-4=0\)
Đường tròn (C) có pt:
\(\left(x-2\right)^2+\left(y-1\right)^2=2\Rightarrow\) (C) tâm \(I\left(2;1\right)\) bán kính \(R=\sqrt{2}\)
\(\left(C_1\right)\) đối xứng (C) qua E \(\Rightarrow\left(C_1\right)\) có tâm \(I_1\) là ảnh của I qua phép đối xứng tâm I và bán kính \(R_1=R=\sqrt{2}\)
\(\left\{{}\begin{matrix}x_{I_1}=2x_E-x_I=0\\y_{I1}=2y_E-y_I=3\end{matrix}\right.\)
Phương trình: \(x^2+\left(y-3\right)^2=2\)
nói c1 với c2 ta có đoạn o1o2
-vẽ đường trung trục của o1o2 .và đườn đó là MN như hình vẽ
-phép đôí xứng trục qua MN sẽ biến (c1) thành (c2).như vậy ta có đc đpcm
Do MN là đường trung bình tam giác ABC \(\Rightarrow MN||AB\) mà \(AB||CD\Rightarrow MN||CD\)
MN và (ABCD) không có điểm chung \(\Rightarrow MN||\left(ABCD\right)\)
MN và (SCD) không có điểm chung \(\Rightarrow MN||\left(SCD\right)\)
MN nằm trên (SAB) nên MN không song song (SAB)
Vậy MN song song với cả (ABCD) và (SCD)