K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

30 tháng 7 2021

`9x^2+4y^2-12xy+6x-4y+1`

`=(3x)^2-2.3x.2y+(2y)^2+2(3x-2y)+1`

`=(3x-2y)^2+2(3x-2y)+1`

`=(3x-2y+1)^2`

30 tháng 7 2021

9x2+4y2-12xy+6x-4y+1=(3x-2y+1)2

4 tháng 9 2020

1/   \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2.3xy+\left(3y\right)^2\)

\(=\left(2x-3y\right)^2\)

2/   \(x^3-y^6=x^3-\left(y^2\right)^3\)

\(=\left(x-y^2\right)\left(x^2+xy^2+y^4\right)\)

Làm tạm 2 phần đợi mik xíu

4 tháng 9 2020

4x2 - 12xy + 9y2 = ( 2x )2 - 2.2x.3y + ( 3y )2 = ( 2x - 3y )2

x3 - y6 = x3  - ( y)3 = ( x - y2 )( x2 + xy2 + y4 )

x6 - 6x4 + 12x2 - 8 = ( x2 )3 - 3.(x2)2.2 + 3.x2.22 - 23 = ( x2 - 2 )3

( x2 + 4y2 - 5 )2 - 16( x2y2 + 2xy + 1 ) = ( x2 + 4y2 - 5 )2 - 42( xy + 1 )2

                                                            = ( x2 + 4y2 - 5 )2 - ( 4xy + 4 )2

                                                            = [ ( x2 + 4y2 - 5 ) - ( 4xy + 4 ) ][ ( x2 + 4y2 - 5 ) + ( 4xy + 4 ) ]

                                                            = ( x2 + 4y2 - 5 - 4xy - 4 )( x2 + 4y2 - 5 + 4xy + 4 )

                                                            = [ ( x2 - 4xy + 4y2 ) - 9 ][ ( x2 + 4xy + 4y2 ) - 1 ]

                                                            = [ ( x - 2y )2 - 32 ][ ( x + 2y )2 - 12 ]

                                                            = ( x - 2y - 3 )( x - 2y + 3 )( x + 2y - 1 )( x + 2y + 1 )

( a + b )3 - ( a3 + b3 ) = a3 + 3a2b + 3ab2 + b3 - a3 - b3

                                  = 3a2b + 3ab2

                                  = 3ab( a + b )

30 tháng 7 2018

\(a,x^2+y^2-4x-2y+6\)

\(=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+1\)

Ta có: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+1\ge1\forall x,y\)

Hay: \(x^2+y^2-4x-2y+6\ge1\)

\(b,x^2+4y^2+z^2-4x+4y-8z+25\)

\(=\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+4\)

\(=\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\)

Vì: \(\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2\ge0\forall x,y,z\)

\(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\ge4\forall x,y,z\)

Hay: \(x^2+4y^2+z^2-4x+4y-8z+25\ge4\)

=.= hok tốt !!

30 tháng 7 2018

Chúc bạn có 1 ngày vui vẻ!!!

3 tháng 9 2023

a, (\(x\) + y).(\(x\) + y)2 - 3\(xy\).(\(x\) + y) 

= (\(x+y\))3 - 3\(x^2\)y - 3\(xy^2\)

\(x^3\) + 3\(x^2\).y + 3\(xy^2\) + y3 - 3\(x^2\).y  - 3\(xy^2\)

\(x^3\) + y3 

3 tháng 9 2023

b, (\(x-y\)).(\(x-y\))2 - 3\(xy\).(\(x-y\)

=    (\(x\) - y)3 - 3\(x^2\).y + 3\(xy^2\)

\(x^3\) - 3\(x^2\)y + 3\(xy^2\) - y3 - 3\(x^2\)y + 3\(xy^2\)

\(x^3\) - 6\(x^2\)y + 6\(xy^2\) - y3