Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Áp dụng hệ quả cô si:
\(\left(a^2+b^2+c^2\right)^{1000}\le3^{999}\left(a^{2000}+b^{2000}+c^{2000}\right)=3^{1000}\)
=>\(a^2+b^2+c^2\le3\)Dấu = khi a=b=c=1
không biết đúng hay sai đâu
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)
t nghĩ ngoài SOS ra thì không còn lời giải sơ cấp nào khác, nếu Max = 1, không có Wolfram Alpha cũng không chắc lắm.
Thử pqr xem nào:
\(P=\frac{ab^2+bc^2+ca^2+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+6}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\frac{1}{2}\left(a-b\right)\left(b-c\right)\left(c-a\right)+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\le\frac{\frac{1}{2}\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}+\frac{1}{2}\left(pq-3r\right)+4p}{r+2q+4p+8}\le1\)
Có: \(p^2-2q=3\therefore q=\frac{\left(p^2-3\right)}{2}\). Từ đó quy bài toán về chứng minh:
\(\frac{5}{2}r+\frac{\left(14-3p\right)\left(3p+1\right)^2}{108}+\frac{263}{54}\ge\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}\)
Vì \(0< p=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên cả 2 vế đều không âm.
Lúc này bất đẳng thức tương đương:
(Đoạn này gõ Latex, không hiên thì vào thống kê hỏi đáp nhá)
\(\Leftrightarrow f\left(r\right)\ge0\). Mặt khác \(f'\left(r\right)=26r+\frac{\left(-15p+10+2\sqrt{415}\right)\left(15p-10+\sqrt{415}\right)^2}{1350}+\frac{904}{27}-\frac{83\sqrt{415}}{135}>0\)
Nên khi r giảm thi f giảm. Mặt khác do \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)
Nên \(r\ge\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-3q\right)^3}+9pq\right)=\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\)
Vì vậy \(f\left(r\right)\ge f\left(\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\right)\ge0\)
Bác Cool Kid chứng minh BĐT 1 biến ở cuối thử xem:v
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
=> BDT cần CMR <=> \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{c^2+a^2}\)
Ta có \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
=>VT\(\ge\frac{a+b+c}{2}\) (Hơi tắt nên tự hiểu)
Ta đi Cm \(\frac{a+b+c}{2}\ge\frac{a^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{c^2+a^2}\)
<=> \(\frac{a+b+c}{2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}+\frac{a^2}{a^2+c^2}\ge3\)(*)
\(\frac{a+b+c}{2}\ge\frac{3}{2}\)
\(\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}+\frac{a^2}{c^2+a^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2b^2+b^2c^2+c^2a^2\right)}\ge\frac{3}{2}\)
=>VT (*) \(\ge3\). Từ đó ta có dpcm
Kiêm đâu lắm bài bdt hay. Gửi link
Bài 1:
a) Ta thấy:
\(x^4-2x^3+2x^2-2x+1=(x^4-2x^3+x^2)+(x^2-2x+1)\)
\(=(x^2-x)^2+(x-1)^2\geq 0, \forall x\in\mathbb{R}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-x=0\\ x-1=0\end{matrix}\right.\) hay $x=1$
b) Đề sai với $a=0,5; b=2,3; c=0,2$. Nếu đề bài của bạn giống bài dưới đây, tham khảo nó tại link sau:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến