Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A 1 ^ + A 2 ^ = B 1 ^ + B 2 ^ = 180 ° ⇒ 2 A 1 ^ + 2 A 2 ^ = 2 B 1 ^ + 2 B 2 ^ (1)
Mặt khác: A 1 ^ − 2 A 2 ^ = B 1 ^ − 2 B 2 ^ (2)
Cộng từng vế các đẳng thức (1) và (2) được 3 A 1 ^ = 3 B 1 ^ ⇒ A 1 ^ = B 1 ^
=> a // b vì có cặp góc so le trong bằng nhau
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(=>\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Khi đó : \(2a^2+2b^2-3c^2=-100\)
\(< =>2\left(3k\right)^2+2\left(4k\right)^2-3\left(5k\right)^2=-100\)
\(< =>2.9.k^2+2.16.k^2-3.25.k^2=-100\)
\(< =>19k^2+32k^2-75k^2=-100\)
\(< =>k^2\left(51-75\right)=-100\)
\(< =>-24k^2=-100\)
\(< =>k^2=\frac{25}{6}\)\(< =>k=\pm\frac{5}{\sqrt{6}}\)
Với \(k=\frac{5}{\sqrt{6}}\)thì \(\hept{\begin{cases}a=\frac{15}{\sqrt{6}}\\b=\frac{20}{\sqrt{6}}\\c=\frac{25}{\sqrt{6}}\end{cases}}\)
Với \(k=-\frac{5}{\sqrt{6}}\)thì \(\hept{\begin{cases}a=-\frac{15}{\sqrt{6}}\\b=-\frac{20}{\sqrt{6}}\\c=-\frac{25}{\sqrt{6}}\end{cases}}\)
Vậy ta có 2 bộ số sau \(\left\{\frac{15}{\sqrt{6}};\frac{20}{\sqrt{6}};\frac{25}{\sqrt{6}}\right\};\left\{-\frac{15}{\sqrt{6}};-\frac{20}{\sqrt{6}};-\frac{25}{\sqrt{6}}\right\}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{180^0}{9}=20^0\)
Do đó: \(\widehat{A}=40^0;\widehat{B}=60^0;\widehat{C}=80^0\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{5}=\dfrac{180^0}{12}=15^0\)
Do đó: \(\widehat{A}=45^0;\widehat{B}=60^0;\widehat{C}=75^0\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b-c}{2+4-5}=\frac{3}{1}=3$
$\Rightarrow a=2.3=6; b=4.3=12; c=5.3=15$
Từ bài toán, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) và \(a+b+c=24\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{24}{12}=2\)
Suy ra:
\(a=2\cdot3=6\)
\(b=2\cdot4=8\)
\(c=3\cdot5=15\)
a) ta có: \(a:b:c=5:4:3\Rightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\)
ADTCDTSBN
...
b) ta có: \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a}{4}=\frac{b}{5}=\frac{3c}{6}\)
ADTCTDSBN
...
c) ta có: \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
ADTCDTSBN
...
d) bn xem lại đề giúp mk nha
a:b:c=2:4:5
nên a/2=b/4=c/5
suy ra 2a/4=b/4=c/5
áp dụng t/c dãy tỉ số =nhau có
2a/4=b/4=c/5=(2a-b+c)/(4-4+5)=7/5
nên
a=14/5
b=28/5
c=7
Ta có: a:b:c=2:4:5=>\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)và \(2a-b+c\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{2a-b+c}{2.2-4-5}=\frac{7}{-5}\)
Đến đây bạn tự làm nha!
a:b:c=3:4:5⇒a/3=b/4=c/5=k
⇒a=3k, b=4k, c=5k
2a2+2b2-3c2=-100
⇔2.(3k)2+2.(4k)2-3.(5k)2=-100
⇔2.9k2+2.16k2-3.25k2=-100
⇔18k2+32k2-75k2=-100
⇔ -25k2=-100
⇔k2=4
⇔k=+-2
k=-2⇔a/3=-2⇔a=-6
b/4=-2⇔b=-8
c/5=-2⇔c=-10
k=2⇔a/3=2⇔a=6
b/4=2⇔b=8
c/5=2⇔c=10
Ta có:
a:b:c=3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)=> a=3k; b=4k; c=5k
=>\(2a^2=\left(6k\right)^2\text{};2b^2=\left(8k\right)^2;3c^2=\left(15k\right)^2\)
mà theo bài ra ta có: 2a2+2b2-3c2=-100
=> \(6k^2+8k^2-15k^2=-100\)
=> \(\left(6+8-15\right)k^2=-100\)
=>\(\left(-1\right)k^2=-100\)
=>\(k^2=\dfrac{-100}{-1}=100\)
=> k= 10 hoặc k=-10
TH1: a=3.10=30
b=4.10=40
c=5.10=50
TH2: a=3.(-10)=-30
b=4.(-10)=-40
c=5.(-10)=-50