K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2015

Kéo dài AD cắt đường tròn ngoại tiếp ABC tại H'.

Đặt x=HD; 
Vì góc BAC nhọn và do H' đối xứng với H qua BC nên ta có: DH'=HD=x; CH'=CH=30
Áp dụng Pitago cho tg vuông ACH':

AC^2+(CH')^2=(AH')^2 -->AC^2+900=(14+2x)^2 (*)
Mặt khác CD^2= AD.DH' --> CD^2=(14+x).x (**)
trừ 2 vế (*) và (**):

AC^2+900-CD^2 =(14+2x)^2 -(14+x).x (***)
Mà AC^2-CD^2 =AD^2 =(14+x)^2;

Thế vào (***) ta được ph.tr:

(14+x)^2+900 =(14+2x)^2-(14+x)x ---> x^2+7x-450=0
phtr trên có nghiệm x= -25 (loại) và x= 18 (nhận)
AD= 14+x =14+18= 32 cm

26 tháng 10 2018

đề bài có j đó sai sai

28 tháng 12 2019

Dựng đường tròn ngoại tiếp tâm O. Gọi AD là đường cao, kéo dài AD cắt đường tròn ngoại tiếp tại H', dễ dàng CM được là H' và H đối xứng với nhau qua BC →→ CH'=CH=30; đặt x = DH' = DH
Tam giác ACH' vuông tại C →→ H'C2 = H'D . H'A →→ 900 = x . H'A (*)
* ) Xét trường hợp góc A nhọn, khi đó H'A = AH + HD + DH' = AH + 2x = 14 + 2x (*)

→→ 900 = x ( 14 + 2x ) →→ 2x2 + 14x - 900 = 0 . Nghiệm dương của phương trình này là x = 18 ( loại nghiệm âm x = -25)

→→ AD= AH + x= 14 + 18 =32 cm
* ) Xét trường hợp A là góc tù : khi đó H'A = H'H - AH = 2 . HD - AH = 2x - 14 (*)

→→ 900 = x . ( 2x - 14 ) →→ 2x2 - 14x - 900 = 0 . Nghiệm dương của phương trình này là x = 25
AD = DH - AH = 25 - 14 = 11 cm

30 tháng 9 2021

Áp dụng HTL trong tam giác ABC vg tại B có đường cao BH:

\(BH^2=AH.HC\)

\(\Rightarrow BH=\sqrt{AH.HC}=\sqrt{1.4}=2\)

Áp dụng đ/lý Pytago trong tam giác ABH vuông tại H và tam giác BHC vuông tại H:

\(\left\{{}\begin{matrix}AB^2=BH^2+AH^2\\BC^2=BH^2+HC^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH^2+AH^2}=\sqrt{2^2+1^2}=\sqrt{5}\\BC=\sqrt{BH^2+HC^2}=\sqrt{2^2+4^2}=2\sqrt{5}\end{matrix}\right.\)

Xét tam giác ABC có: BD là phân giác

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AD}{1}=\dfrac{DC}{2}\)

Mà \(AD+DC=BC=AH+HC=1+4=5\)

\(\Rightarrow\dfrac{AD}{1}=\dfrac{DC}{2}=\dfrac{AD+DC}{1+2}=\dfrac{5}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}AD=\dfrac{5}{3}\\DC=\dfrac{5.2}{3}=\dfrac{10}{3}\end{matrix}\right.\)