K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2015

Kéo dài AD cắt đường tròn ngoại tiếp ABC tại H'.

Đặt x=HD; 
Vì góc BAC nhọn và do H' đối xứng với H qua BC nên ta có: DH'=HD=x; CH'=CH=30
Áp dụng Pitago cho tg vuông ACH':

AC^2+(CH')^2=(AH')^2 -->AC^2+900=(14+2x)^2 (*)
Mặt khác CD^2= AD.DH' --> CD^2=(14+x).x (**)
trừ 2 vế (*) và (**):

AC^2+900-CD^2 =(14+2x)^2 -(14+x).x (***)
Mà AC^2-CD^2 =AD^2 =(14+x)^2;

Thế vào (***) ta được ph.tr:

(14+x)^2+900 =(14+2x)^2-(14+x)x ---> x^2+7x-450=0
phtr trên có nghiệm x= -25 (loại) và x= 18 (nhận)
AD= 14+x =14+18= 32 cm

2 tháng 7 2018

Gọi H' đối xứng với H qua BC, D là giao điểm của AH và BC.

Dễ thấy BHCH' là hình thoi. 

\(\Rightarrow\Delta ABH'\)vuông tại B

\(\Rightarrow H'B^2=H'D.H'A\)

\(\Leftrightarrow BH^2=HD\left(2HD+14\right)\)

\(\Leftrightarrow30^2=HD\left(2HD+14\right)\)

\(\Leftrightarrow\orbr{\begin{cases}HD=18\\HD=-25\left(l\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}AD=14+18=32\\BD=\sqrt{30^2-18^2}=24\end{cases}}\)

\(\Rightarrow AB=\sqrt{32^2+24^2}=40\)

2 tháng 7 2018

mình không biết làm

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

Theo tính chất tia phân giác:

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.BC$

$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$

Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)

Do đó:

$BH=35:(9+16).9=12,6$ (cm)

$CH=35:(9+16).16=22,4$ (cm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Hình vẽ:

23 tháng 11 2023

loading... a) Ta có:

OB = OC (bán kính)

⇒ O nằm trên đường trung trực của BC (1)

Do ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC (2)

Từ (1) và (2) suy ra O ∈ AH

⇒ O ∈ AD

Vậy AD là đường kính của (O)

b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC

Do AH là đường trung trực của BC (cmt)

⇒ H là trung điểm của BC

⇒ CH = BC : 2

= 12 : 2

= 6 (cm)

∆AHC vuông tại H

⇒ AC² = AH² + CH² (Pytago)

⇒ AH² = AC² - CH²

= 10² - 6²

= 64

⇒ AH = 8 (cm)

⇒ sinACH = AH/AC

= 4/5

⇒ ACH ≈ 53⁰

⇒ BCK ≈ 53⁰

∆BCK vuông tại K

⇒ sinBCK = BK/BC

⇒ BK = BC.sinBCK

= 10.sin53⁰

≈ 8 (cm)

Sửa đề: BD=7,5cm

BC=7,5+10=17,5cm

AD là phân giác

=>AB/BD=aC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=17,5^2

=>k=3,5

=>AB=10,5cm; AC=14cm

AH=10,5*14/17,5=8,4cm

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45=\dfrac{2\cdot10.5\cdot14}{10.5+14}\cdot\dfrac{\sqrt{2}}{2}=6\sqrt{2}\left(cm\right)\)

15 tháng 9 2016

A C H D 24 cm B

có:  HC . HB = AH2 = 576  trong tam giác vuông đường cao ứng với cạnh huyền bằng tích hình chiếu 2 cạnh góc vuông trên cạnh huyền) (1)

mà HC - HB = 14  => HC = 14 + HB

thay vào (1): HC . HB = (14 + HB) . HB = HB2 + 14HB  = 576  

=> HB2 + 14HB - 576 = 0  => (HB - 18) (HB + 32) = 0    => HB = 18 cm

=> HC = 14 + 18 = 32 cm    => BC = 18 + 32 = 50

=> AB2 = BH . BC = 18 . 50 = 900    => AB = 30  cm

=> AC2 = CH . BC = 32 . 50 = 1600  => AC = 40 cm

Có: BD/DC = AB/AC  => BD/AB = DC/AC  và BD + DC = 50

áp dụng tính chất dãy tỉ số bằng nhau đc:

\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+CD}{AB+AC}=\frac{50}{70}=\frac{5}{7}\)

  • => BD = 5 . AB = 5 . 30 : 7 = 150/7 cm

=> CD = 50 - 150/7 = 200/7 cm

=> HD = 50 - CD  - BH = 50 - 200/7 - 18 = 24/7 cm

xét tam giác vuông ADH: 

AD2 = AH+ DH2 = 242 + (24/7)2 

  • => AD = \(\sqrt{24^2+\left(\frac{24}{7}\right)^2}\approx24,244\)cm
15 tháng 9 2016

Ta có: HB.HC=AH^2=24^2=576. 
Biết được tích HB.HC là 576, hiệu HC-HB là 14(theo đầu bài)thì tính được BC=HB+HC 
(HC+HB)^2=(HC-HB)^2+4.HC.HB (cái này bạn khai triển ra là thấy)=14^2+4.576 =2500 
=> HC+HB=căn(2500)=50=>BC=50=>BD+DC=50( vì BD+DC=BC) 
HC+HB=50 mà HC-HB=14=> HC=32 và HB=18( tính hai số biết tổng và hiệu) 
Biết được tổng BD+DC, để tính được BD, ta đi tính tỉ số BD/DC: 
BD/DC=AB/AC ( vì AD là phân giác của tam giác ABC)=>BD=150/7 
=>HD=BD-HB=150/7-18=24/7. 
Áp dụng định lý py-ta-go vào tam giác vuông AHD ta có: 
AD^2=AH^2+HD^2=24^2+(24/7)^2=28800/49 
=>AD=căn(28800/49) sấp sỉ 24,244.