Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4+4^2+ 4^3+...+4^49+4^50
= (4+4^2)+.....+(4^49+4^50)
=4(1+4) +.......+4^49(1+4)
=(1+4)(4+....+4^49)
=5(4+...4^49)
CHIA HẾT CHO 5
A = 41 + 42 + 43 + 44 +...+ 449 + 450
= (41 + 42) + (43 + 44) +....+ (449 + 450)
= 4 ( 4 + 1) +43 ( 4 + 1 ) +...+ 449 ( 4 + 1 )
= (4 + 1) ( 4 + 43 +...+ 449)
= 5. ( 4 + 43 +..+ 449) chia hết cho 5.
\(A=4+4^2+4^3+...+4^{48}+4^{49}+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+\left(4^5+4^6\right)+...+\left(4^{45}+4^{46}\right)+\left(4^{47}+4^{48}\right)+\left(4^{49}+4^{50}\right)\)
\(A=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)+...+4^{45}\left(1+4\right)+4^{47}\left(1+4\right)+4^{49}\left(1+4\right)\)
\(A=4.5+4^3.5+4^5.3+...+4^{45}.5+4^{47}.5+4^{49}.5\)
\(A=5.\left(4+4^3+4^5+...+4^{45}+4^{47}+4^{49}\right)\)\(⋮\)\(5\)
\(\Rightarrow\)\(A⋮5\)
a)Cho A =4+42+43+....+448+449+450chia hết 5
A=(4+42)+(43+44)+.....+(447+449)+(449+450)
A=20+42.(4+42)+.....+446.(4+42)+448.(4+42)
A=20+42.20+.......+446.20+448.20
Vì 20 chia hết 5 suy ra 20+42.20+....+446.20+448.20chia hết cho 5
Vậy A chia hết cho 5
n
TL:
A) \(A=5+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(5.A=5\left(5+5^2+5^3+5^4+...+5^{49}+5^{50}\right)\)
\(5A=5^2+5^3+5^4+...+5^{50}+5^{51}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(5+5^2+5^3+5^4+...+5^{49}+5^{50}\right)\)
\(4A=5^{51}-5\)
Vậy \(4A=5^{51}-5\left(đpcm\right)\)
B) \(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{49}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{49}.6\)
\(A=6.\left(5+5^3+...+5^{49}\right)⋮6\)
Vậy \(A\)chia hết cho 6
HT!!~!
A=4+4^2+4^3+...+4^99
=(4+4^2)+(4^3+4^4)+...+(4^98+4^99)
=1.(4+4^2)+4^2.(4+4^2)+...+4^97.(4+4^2)
=1.20+4^2.20+...+4^97.20
=20.(1+4^2+...+4^97) chia hết cho 5.
=vì 20 chia hết cho 5.
=Vậy A chia hết cho 5
A=4+4^2+4^3+4^4+...+4^49+4^50
A=(4+4^2)+(4^3+4^4)+...+(4^49+4^50)
A=4.(1+4)+4^3.(1+4)+...+4^49.(1+4)
A=4.5+4^3.5+...+4^49.5
A=5.(4+4^3+...+4^49) chia het cho 5(vi 5 chia het cho 5)
=> A chia het cho 5
\(A=4+4^2+4^3+4^4+...+4^{49}+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{49}+4^{50}\right)\)
\(A=4.5+4^3.5+...+4^{49}.5\)
\(A=5.\left(4+4^3+...+4^{49}\right)CHIA-HETCHO5\)