Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)
a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
Mình chỉ làm được câu a thôi,bạn hãy thử lại nhé
a.(2n+5) chia hết cho (n-1)
Ta có :2n+5=2n-1+6
Vì 2n-1 chia hết cho n-1 =>2n-1+6 chia hết cho n-1 khi 6 chia hết cho n-1
=>n-1 thuộc Ư(6)
Mà Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-1 thuộc{-1;1;-2;2;-3;3;-6;6}
Ta có bảng giá trị sau :
n-1 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | 0 | 2 | -1 | 3 | -2 | 4 | -5 | 7 |
Vậy n thuộc {0;2;-1;3;-2;4;-5;7}
HÌNH NHƯ BỊ SAI KẾT QUẢ NHƯNG MÌNH CHẮC CHẮN CÁCH LÀM
\(10^n\)có 1 chữ số 1 và n chữ số 0 nên tổng các chữ số của \(10^n+8\)bằng 9, do vậy nó chia hết cho 9
\(A=4+4^2+4^3+...+4^{48}+4^{49}+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+\left(4^5+4^6\right)+...+\left(4^{45}+4^{46}\right)+\left(4^{47}+4^{48}\right)+\left(4^{49}+4^{50}\right)\)
\(A=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)+...+4^{45}\left(1+4\right)+4^{47}\left(1+4\right)+4^{49}\left(1+4\right)\)
\(A=4.5+4^3.5+4^5.3+...+4^{45}.5+4^{47}.5+4^{49}.5\)
\(A=5.\left(4+4^3+4^5+...+4^{45}+4^{47}+4^{49}\right)\)\(⋮\)\(5\)
\(\Rightarrow\)\(A⋮5\)
a)Cho A =4+42+43+....+448+449+450chia hết 5
A=(4+42)+(43+44)+.....+(447+449)+(449+450)
A=20+42.(4+42)+.....+446.(4+42)+448.(4+42)
A=20+42.20+.......+446.20+448.20
Vì 20 chia hết 5 suy ra 20+42.20+....+446.20+448.20chia hết cho 5
Vậy A chia hết cho 5
n