Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\leq 3$
$(x-4)(\sqrt{3-x}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ \sqrt{3-x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4(\text{loại do 4>3})\\ x=2(tm)\end{matrix}\right.\)
Vậy số nghiệm thực của pt là $1$
Đáp án B.
Phương trình theo đề bài là phương trình bậc 2, cao nhất là có 2 nghiệm phân biệt nên để thỏa mãn có 2 hoặc 4 nghiệm phân biệt
\(\Rightarrow m\in\varnothing\)
a: vecto OI=(1;4)
=>I(1;4)
Theod dề, ta có: \(R=d\left(I;\Delta\right)=\dfrac{\left|1\cdot1+4\cdot4-7\right|}{\sqrt{1^2+4^2}}=\dfrac{10}{\sqrt{17}}\)
=>(C): (x-1)^2+(y-4)^2=100/17
b: d(M;Δ)=căn 17
=>\(\dfrac{\left|x\cdot1+0\cdot4-7\right|}{\sqrt{1^2+4^2}}=\sqrt{17}\)
=>|x-7|=17
=>x=24 hoặc x=-10
Phương trình a x 2 + b x + c = 0 a > 0 có nghiệm duy nhất nếu
∆ = b 2 - 4 a c = 0 ⇔ b 2 = a c
Đáp án cần chọn là: B
a)
b) Ta có: Tọa độ các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) lần lượt là: -5; 5
Ta có \(\overrightarrow {AB} = - \overrightarrow {CD} \)
Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) ngược hướng
Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=3\)
a. \(\overrightarrow{IM}=\left(0;2\right)\Rightarrow IM=\sqrt{0^2+2^2}=2< R\Rightarrow\) M nằm trong đường tròn
b. \(d\left(I;d\right)=\dfrac{\left|2-\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\sqrt{2}< 3\Rightarrow d\) cắt đường tròn tại 2 điểm
c. Khoảng cách giữa 2 điểm trên đường tròn là lớn nhất khi chúng nằm ở 2 mút đường kính
\(\Rightarrow\) d' đi qua tâm I
Do d' vuông góc d nên nhận (1;1) là 1 vtpt
Phương trình: \(1\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow x+y-1=0\)
Phương trình có hai nghiệm phân biệt khi Δ > 0.
Khi đó, gọi hai nghiệm của phương trình là x 1 và x 2 .
Do x 1 và x 2 là hai nghiệm dương nên x 1 + x 2 > 0 x 1 x 2 > 0 hay S > 0 P > 0
Đáp án cần chọn là: B
Phương trình có hai nghiệm âm phân biệt khi và chỉ khi Δ > 0 S < 0 P > 0
Đáp án cần chọn là: C