Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)
Áp dụng BĐT B.C.S:
\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)
Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)
Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)
\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)
Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)
câu 4 \(\sqrt{x^2-2x}=\sqrt{2x-x^2}\Leftrightarrow x^2-2x=2x-x^2\)
\(\Leftrightarrow2\left(x^2-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
câu C
Câu 5 \(x\left(x^2-1\right)\sqrt{x-1}=0\)
ĐK \(x\ge1\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\sqrt{x-1}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\sqrt{x-1}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nh\right)\\x=-1\left(l\right)\end{matrix}\right.\)
vậy pt có 1 nghiệm
câu B
Akai HarumaAce LegonaNguyễn Thanh HằngNguyễn Huy TúMysterious PersonVõ Đông Anh TuấnNguyễn Thanh HằngVũ Minh Tuấn
Lời giải:
ĐKXĐ: $x\leq 3$
$(x-4)(\sqrt{3-x}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ \sqrt{3-x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4(\text{loại do 4>3})\\ x=2(tm)\end{matrix}\right.\)
Vậy số nghiệm thực của pt là $1$
Đáp án B.