Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(-x^2+4x-5=-\left(x-2\right)^2-1< 0;\forall x\)
Nên BPT tương đương:
\(x^2-2\left(2m-3\right)x+4m-3>0\)
Để BPT đúng với mọi x:
\(\Leftrightarrow\Delta'=\left(2m-3\right)^2-\left(4m-3\right)< 0\)
\(\Leftrightarrow4m^2-16m+12< 0\Rightarrow1< m< 3\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\) bạn tự tìm đáp án đúng
Đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\left(y\ge-\dfrac{1}{2}\right)\).
Ta có hpt:
\(\left\{{}\begin{matrix}14y^2+14y=2x+1\\14x^2+14x=2y+1\end{matrix}\right.\)
\(\Rightarrow14\left(x^2-y^2\right)+16\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y=\dfrac{-8}{7}\end{matrix}\right.\).
Đến đây thế vào là được.
Ta có: \({x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\)
\( \Rightarrow A = \{ 1; - 2\} \)
Ta có: \(2{x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2}\\x = - 2\end{array} \right.\)
\( \Rightarrow B = \left\{ {\frac{3}{2}; - 2} \right\}\)
Vậy \(C = A \cap B = \{ - 2\} \).
Thay x = 0 và x = 2 vào phương trình ta thấy hai vế đều cho giá trị là 3.
Đáp án: C
Mệnh đề \(P \Rightarrow Q\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta = {b^2} - 4ac\;\, > 0\).”
Mệnh đề \(Q \Rightarrow P\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta = {b^2} - 4ac\;\, > 0\) thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt.”
Phương trình a x 2 + b x + c = 0 a > 0 có nghiệm duy nhất nếu
∆ = b 2 - 4 a c = 0 ⇔ b 2 = a c
Đáp án cần chọn là: B