K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 2 2020

Với \(a=b=-1;c=1\) BĐT sai

Nếu các số không âm thì:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

29 tháng 1 2020

Ta có: \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a^6+ab^5+b^6+a^5b\right)\ge a^6+a^2b^4+a^4b^2+b^6\)

\(\Leftrightarrow ab^5+a^5b-a^2b^4-a^4b^2\ge0\)

\(\Leftrightarrow ab\left(b^4+a^4-ab^3-a^3b^3\right)\ge0\)

\(\Leftrightarrow a^4+b^4-ab^3-a^3b\ge0\left(Vì:ab>0\right)\)

\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)

\(a^3\left(a-b\right)+b^3\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\left(luôn-đúng\forall a,b\right)\)

Vì: \(\left(a-b\right)^2\ge0\forall a,b\)

\(a^2ab+b^2=a^2+ab+\frac{b^2}{4}+\frac{3}{4}b^2\)

\(=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2\ge0\forall a,b\)

Từ trên ta suy ra: \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)vớiab>0\left(đpcm\right)\)

29 tháng 1 2020

Thật ra mình thấy đến chỗ
(a-b)^2 . (a^2+ab+b^2) >= 0
Giải thích là ab>0 nên auto >= 0 là đc rồi
Không cần khai triển ra lắm :v

3 tháng 12 2017

Ta chứng minh được:

\(\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\right)^2\ge3\left(a^2+b^2+c^2\right)\)

Thật vậy, bđt đúng với \(\left(\dfrac{ab}{c};\dfrac{bc}{a};\dfrac{ca}{b}\right)=\left(x;y;z\right)\)

\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Đẳng thức xảy ra khi x=y=z=> BĐT cần chứng minh xảy ra dấu bằng khi a=b=c

\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge3\)

3 tháng 12 2017

ta có \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow1\ge\sqrt[3]{a^2b^2c^2}\)

a) theo bđt cauchy schwarz ta có

\(\dfrac{a^3b^3}{c}+\dfrac{b^3c^3}{a}+\dfrac{c^3a^3}{b}\ge3\sqrt[3]{\dfrac{a^6b^6c^6}{abc}}=3\dfrac{a^2b^2c^2}{\sqrt[3]{abc}.1}\ge3\dfrac{a^2b^2c^2}{\sqrt[3]{a^3b^3c^3}}=3abc\)

bài 1: Rút gọn: a) A= \(sin^2x+sin^2x.cot^2x\) b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\) c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\) d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\) e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\) f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\) g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\) bài 2: cho các số dương a,b,c có a+b+c=3. Tìm...
Đọc tiếp

bài 1: Rút gọn:

a) A= \(sin^2x+sin^2x.cot^2x\)

b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\)

c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)

d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\)

e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\)

f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\)

g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\)

bài 2: cho các số dương a,b,c có a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức

P= \(\dfrac{a\sqrt{a}}{\sqrt{2c+a+b}}+\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}\)

bài 3: cho a,b,c dương sao cho \(a^2+b^2+c^2=3\). Chứng minh rằng: \(\dfrac{a^3b^3}{c}+\dfrac{a^3c^3}{b}+\dfrac{b^3c^3}{a}\ge3abc\)

bài 4: cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức :

P= \(\dfrac{1}{a}+\dfrac{1}{b}-c\)

bài 5: Cho a,b>0, \(3b+b\le1.\) Tìm giá trị nhỏ nhất của P= \(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)

5
AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 1:

a)

\(\sin ^2x+\sin ^2x\cot^2x=\sin ^2x(1+\cot^2x)=\sin ^2x(1+\frac{\cos ^2x}{\sin ^2x})\)

\(=\sin ^2x.\frac{\sin ^2x+\cos^2x}{\sin ^2x}=\sin ^2x+\cos^2x=1\)

b)

\((1-\tan ^2x)\cot^2x+1-\cot^2x\)

\(=\cot^2x(1-\tan^2x-1)+1=\cot^2x(-\tan ^2x)+1=-(\tan x\cot x)^2+1\)

\(=-1^2+1=0\)

c)

\(\sin ^2x\tan x+\cos^2x\cot x+2\sin x\cos x=\sin ^2x.\frac{\sin x}{\cos x}+\cos ^2x.\frac{\cos x}{\sin x}+2\sin x\cos x\)

\(=\frac{\sin ^3x}{\cos x}+\frac{\cos ^3x}{\sin x}+2\sin x\cos x=\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin x\cos x}=\frac{(\sin ^2x+\cos ^2x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}\)

\(=\frac{1}{\frac{\sin 2x}{2}}=\frac{2}{\sin 2x}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 2:

Áp dụng BĐT Cauchy Schwarz ta có:

\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)

\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}}(*)\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq (a+b+c)(2c+a+b+2a+b+c+2b+c+a)\)

\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq 4(a+b+c)^2\)

\(\Rightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}\leq 2(a+b+c)(**)\)

Từ \((*); (**)\Rightarrow P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

Dấu "=" xảy ra khi $a=b=c=1$

25 tháng 3 2020
https://i.imgur.com/bx8s8Hy.jpg
25 tháng 3 2020
https://i.imgur.com/AISWXxC.jpg
13 tháng 2 2020

a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)

Đẳng thức xảy ra khi \(a=b=c\)

b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)

Đẳng thức xảy ra khi \(a=b=c\)

c) Theo câu b và BĐT Cauchy-Schwarz:

\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(a=b=c\)

13 tháng 2 2020

áp dụng bđt cô si có dc k

19 tháng 12 2020

Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)

\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ac}\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)

\(=a+b+b+c+c+a=2\left(a+b+c\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

19 tháng 12 2020

Chứng minh BĐT: \(x^3+y^3\ge xy\left(x+y\right)\)

Áp dụng BĐT \(a^2+b^2\ge2ab\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Đẳng thức xảy ra khi \(x=y\)

4 tháng 8 2020

hình như sai sai !! nên ....

NV
4 tháng 8 2020

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow\left\{{}\begin{matrix}a^3\ge b^3\ge c^3\\\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\end{matrix}\right.\)

\(\Rightarrow\frac{a^3}{b+c}\ge\frac{b^3}{c+a}\ge\frac{c^3}{a+b}\)

Do đó áp dụng BĐT Chybeshev:

\(\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)\left[\left(a+b\right)+\left(c+a\right)+\left(b+c\right)\right]\ge3\left[\frac{a^3}{b+c}.\left(b+c\right)+\frac{b^3}{c+a}\left(c+a\right)+\frac{c^3}{a+b}\left(a+b\right)\right]\)

\(\Leftrightarrow\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)\left[\left(a+b\right)+\left(c+a\right)+\left(b+c\right)\right]\ge3\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{3}{2}.\frac{a^3+b^3+c^3}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

19 tháng 11 2019

Áp dụng BĐT AM - GM:

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\frac{\left(a+c\right)^3}{a^3}}}=\sqrt{\frac{1}{\left(1+\frac{a+c}{a}\right)\left[1-\frac{a+c}{a}+\frac{\left(a+c\right)^2}{a^2}\right]}}\)

\(\ge\sqrt{\frac{4}{\left[1++\frac{a+c}{a}+1-\frac{a+c}{a}+\frac{\left(a+c\right)^2}{a^2}\right]^2}}\)

\(=\sqrt{\frac{4a^4}{\left[2a^2+\left(b+c\right)^2\right]^2}}=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{a^2}{a^2+b^2+c^2}\)

Tương tự ta chứng minh được:

\(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Công vế với vế 3 bất đẳng thức trên ta được

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c\)

Mà đề bài có điều kiện a, b, c khác 0 không bạn

19 tháng 11 2019

@Nguyễn Việt Lâm