Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 4( b² + c² + d² + e²) ≥( b + c + d +e )² ( dễ lắm, bạn tự cm lấy nhé, )
=> ( b² + c² + d² + e²) ≥ ( b + c + d +e )²/4 (*)
G/s bdt đề bài đúng, ta có:
<=> a² + b²+ c² + d²+ e² - a(b + c + d +e) ≥ 0
Lại có ( *) => ta có : a² + b²+ c² + d² + e² - a(b + c + d +e) ≥ a² + ( b + c + d +e )²/4 - a(b + c + d +e)
<=> [ a - ( b + c+ d +e)/2]² => hiển nhiên đúng
Vậy ta có dpcm.
Với cách này ta cũng có thể chứng minh các bdt tương tự với 3 biến, 4 biến v.v....
cho ti le thuc voi a,b,c,d thuoc z b,d khac 0 chung minh rang a^2 + b^2 phần c^2 + d^2 =a*b phần c*d
Đặt:a/b=c/d=k =>a=bk,c=dk
Thay vào vế trái ta có:
a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)
Thay vào vế phải ta có:
ab/cd=b^2.k/d^2.k=b^2/d^2(2)
Từ 1 và 2 =>đpcm
Thay a = -1 , b=1 vào biểu thức A
=> A = 5.(-1)^3.1^8 = - 5
Thay a = -1 , b= 2 vào biểu thức B
=>B = -9.(-1)^4 . 2^2 = - 36
Ta có :
C = ax + ay + bx + by = a(x+y) + b(x+y) = (x+y)(a+b)
Thay a+b = - 3 , x+y = 17 vào biểu thức C
C = ( -3)(17) = -51
f(-2).f(3) = (4a-2b+c).(9a+3b+c)
= (4a-2b+c).(13a+b+2c-(4a-2b+c))
Mà 13a+b+2c = 0 theo giả thiết
=> f(-2).f(3) = -[(4a-2b+c)^2]
Có (4a-2b+c)^2 luôn >= 0 => f(-2).f(3) luôn nhỏ hơn hoặc bằng 0
Yêu cầu đề bài là gì, bạn cần ghi rõ ra nhé.