K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

1)A=987

7 tháng 12 2023

Bài 1:

a; (n + 4) \(⋮\) ( n - 1)  đk n ≠ 1

 n - 1 + 5  ⋮ n - 1

            5  ⋮ n - 1

n - 1     \(\in\) Ư(5) = {-5; -1; 1; 5}

\(\in\) { -4; 0; 2; 6}

 

7 tháng 12 2023

Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1

          n2 + 2n + 1 - 4 ⋮ n + 1

          (n + 1)2      -  4 ⋮ n + 1

                                4 ⋮ n + 1

           n + 1  \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}

           n  \(\in\)  {-5; -3; -2; 0; 1; 3}

           

Ai làm nhanh nhất mk cho 5 T.I.C.K

Bài 1:

Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 1; 3n + 1)

⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d                        ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d                        ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d

⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 1; 3n + 1) = 1

Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.

Bài 2:

Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 4n + 12)

⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d                        ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d                        ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d

⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d

⇒⇒2 ⋮⋮d

Mà: 2n + 5 là số lẻ nên d = 1

Do đó: ƯCLN(2n + 5; 4n + 12) = 1

Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.

Bài 3:

Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(12n + 1; 30n + 2)

⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d                        ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d                        ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d

⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(12n + 1; 30n + 2) = 1

Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.

Bài 4:

Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)

⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d                        ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d                        ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d

⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 5; 3n + 7) = 1

Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.

Bài 5:

Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)

⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d                        ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d                        ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d

⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(5n + 7; 3n + 4) = 1

Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.

Bài 6:

Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)

⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d                        ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d                        ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d

⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(7n + 10; 5n + 7) = 1

Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.

6 tháng 12 2019

THANKS BẠN NHA !

14 tháng 11 2021

b) \(\Rightarrow\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{17\right\}\)

a) Do \(n\in N\)

\(\Rightarrow n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

c) \(\Rightarrow\left(n+1\right)+8⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow n\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)

d) \(\Rightarrow3\left(n+1\right)+18⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

\(\Rightarrow n\in\left\{0;1;2;5;8;17\right\}\)

e) \(\Rightarrow\left(n-2\right)+10⋮\left(n-2\right)\)

Do \(n\in N\Rightarrow\left(n-2\right)\inƯ\left(10\right)=\left\{-2;-1;1;2;5;10\right\}\)

\(\Rightarrow n\in\left\{0;1;3;4;7;12\right\}\)

f) \(\Rightarrow n\left(n+4\right)+11⋮\left(n+4\right)\)

Do \(n\in N\Rightarrow\left(n+4\right)\inƯ\left(11\right)=\left\{11\right\}\)

\(\Rightarrow n\in\left\{7\right\}\)

 

14 tháng 11 2021

 \(19:\left(n+2\right)\)

⇒ (n+2)∈Ư(19)=(1,19)

n+2            1               19

n               -1(L)           17(TM)

15 tháng 3 2018

vào mạnh nha

16 tháng 9 2021

100 thi phai

16 tháng 9 2021

ư(29)={ 1; 29 }

n-3=1   => 4

n-3=29  => 32