Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{4}{7}\) \(\times\) \(\dfrac{a}{b}\) - \(\dfrac{1}{3}\) = \(\dfrac{1}{21}\)
\(\dfrac{4}{7}\) \(\times\) \(\dfrac{a}{b}\) = \(\dfrac{1}{21}\) + \(\dfrac{1}{3}\)
\(\dfrac{4}{7}\) \(\times\) \(\dfrac{a}{b}\) = \(\dfrac{8}{21}\)
\(\dfrac{a}{b}\) = \(\dfrac{8}{21}\): \(\dfrac{4}{7}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{3}\)
b, \(\dfrac{a}{b}\) - \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2}{3}\) = \(\dfrac{2}{7}\)
\(\dfrac{a}{b}\) - \(\dfrac{1}{3}\) = \(\dfrac{2}{7}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{7}\) + \(\dfrac{1}{3}\)
\(\dfrac{a}{b}\) = \(\dfrac{13}{21}\)
a) \(...\dfrac{11}{4}-a+\dfrac{1}{4}=\dfrac{3}{2}\)
\(\dfrac{11}{4}+\dfrac{1}{4}-a=\dfrac{3}{2}\)
\(3-a=\dfrac{3}{2}\)
\(a=3-\dfrac{3}{2}\)
\(a=\dfrac{6}{2}-\dfrac{3}{2}\)
\(a=\dfrac{3}{2}\)
b) \(...\dfrac{13}{4}-a-\dfrac{13}{4}=\dfrac{7}{8}\)
\(\dfrac{13}{4}-\dfrac{13}{4}-a=\dfrac{7}{8}\)
\(0-a=\dfrac{7}{8}\)
\(a=-\dfrac{7}{8}\) (ra số âm lớp 5 chưa học nên bạn xem lại đề)
c) \(...\dfrac{17}{6}-\dfrac{3}{2}-a=\dfrac{1}{6}\)
\(\dfrac{17}{6}-\dfrac{9}{6}-a=\dfrac{1}{6}\)
\(\dfrac{8}{6}-a=\dfrac{1}{6}\)
\(a=\dfrac{8}{6}-\dfrac{1}{6}\)
\(a=\dfrac{7}{6}\)
a, 2\(\dfrac{3}{4}\) - a + \(\dfrac{1}{4}\) = 1\(\dfrac{1}{2}\)
a = 2 + \(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) - 1 - \(\dfrac{1}{2}\)
a = 2 + 1 - 1 - \(\dfrac{1}{2}\)
a = 2 - \(\dfrac{1}{2}\)
a = \(\dfrac{3}{2}\)
b, 3\(\dfrac{1}{4}\) - a - 3\(\dfrac{1}{4}\) = \(\dfrac{7}{8}\)
(3\(\dfrac{1}{4}\) - 3\(\dfrac{1}{4}\)) - a = \(\dfrac{7}{8}\)
a = - \(\dfrac{7}{8}\)
c, 2\(\dfrac{5}{6}\) - 1\(\dfrac{1}{2}\) - a = \(\dfrac{1}{6}\)
a = 2 + \(\dfrac{5}{6}\) - 1 - \(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)
a = (2-1) + (\(\dfrac{5}{6}\) - \(\dfrac{1}{6}\)) - \(\dfrac{1}{2}\)
a = 1 + \(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)
a = \(\dfrac{7}{6}\)
a,a+1/4=2 3/4-1 1/2
a+1/2=5/4
a=5/4-1/2
a=3/4
b,a-7/4=13/4-7/9
a-7/4=89/36
a= 89/36+7/4
a=152/36
c,3/2-a=17/6-1/6
3/2-a=8/3
a= 3/2-8/3
a= -7/6
a, \(\dfrac{4}{7}\). \(\dfrac{a}{b}\) - \(\dfrac{1}{3}\) = \(\dfrac{1}{21}\)
\(\dfrac{4}{7}\).\(\dfrac{a}{b}\) = \(\dfrac{1}{21}\) + \(\dfrac{1}{3}\)
\(\dfrac{4}{7}\).\(\dfrac{a}{b}\) = \(\dfrac{8}{21}\)
\(\dfrac{a}{b}\) = \(\dfrac{8}{21}\):\(\dfrac{4}{7}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{3}\)
b, \(\dfrac{a}{b}\) + \(\dfrac{2}{3}\).\(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
\(\dfrac{a}{b}\) + \(\dfrac{2}{9}\) = \(\dfrac{2}{3}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{3}\) - \(\dfrac{2}{9}\)
\(\dfrac{a}{b}\) = \(\dfrac{4}{9}\)
c, \(\dfrac{a}{b}\) - \(\dfrac{1}{2}.\)\(\dfrac{2}{3}\) = \(\dfrac{2}{7}\)
\(\dfrac{a}{b}\) - \(\dfrac{1}{3}\) = \(\dfrac{2}{7}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{7}\) + \(\dfrac{1}{3}\)
\(\dfrac{a}{b}\) = \(\dfrac{13}{21}\)
d, \(\dfrac{11}{13}\): \(\dfrac{a}{b}\): \(\dfrac{2}{3}\) = 2\(\dfrac{7}{13}\)
\(\dfrac{11}{13}\): \(\dfrac{a}{b}\):\(\dfrac{2}{3}\) = \(\dfrac{33}{13}\)
\(\dfrac{11}{13}\): \(\dfrac{a}{b}\) = \(\dfrac{33}{13}\) \(\times\) \(\dfrac{2}{3}\)
\(\dfrac{11}{13}\): \(\dfrac{a}{b}\) = \(\dfrac{66}{39}\)
\(\dfrac{a}{b}\) = \(\dfrac{11}{13}\) : \(\dfrac{66}{39}\)
\(\dfrac{a}{b}\) = \(\dfrac{1}{2}\)
=>1-1/2+1/2-1/3+...+1/a-1/(a+1)=2020/2021
=>1-1/(a+1)=2020/2021
=>1/(a+1)=1/2021
=>a+1=2021
=>a=2020
Từng bài 1 thôi nhs!
a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005
3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004
4A = 32005 + 1
=> 4A - 1 = 32005 là lũy thừa của 3
=> ĐPCM
đề có thiếu ko đó
A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004
đặt B = 23 + 24 + 25 + ...+ 22003 + 22004
2B= 24 + 25 + 26 + ....+ 22004 + 22005
2B-B= ( 24 + 25 + 26 + ....+ 22004 + 22005 ) - ( 23 + 24 + 25 + ...+ 22003 + 22004 )
B = 24 + 25 + 26 + ....+ 22004 + 22005 - 23 - 24 - 25 - ...- 22003 - 22004
B = 22005 - 23
B = 22005 - 8
=> A = 4 + B = 4 + 22005 - 8 = 22005 - 4 = .....
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
......
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}< \frac{1}{1.2}+..+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{100}< 1\).Suy ra điều phải chứng minh. câu b tương tự. bấm đúng cho mình nha
thế là thế nào , ko hiểu câu hỏi