Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy B=20^10-1/20^10-3 là phân số lớn hơn 1.
Theo tính chất nếu a/b>1 thì a/b > a+n/b+n ( n khác 0 )
Ta có : 20^10-1/20^10-3 > 20^10-1+2/20^10-3+2
<=> B > 20^10+1/20^10-3 = A
<=> B > A
Vậy B > A
A=\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)
(Sử dung phương pháp chặn số đầu)
\(\frac{1}{100}\)>\(\frac{1}{101}\)
\(\frac{1}{100}\)>\(\frac{1}{102}\)
...
\(\frac{1}{100}\)>\(\frac{1}{200}\)
nên \(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)> \(\frac{1}{100}\)+\(\frac{1}{100}\)+...+\(\frac{1}{100}\)(có 101 phân số)
\(\Rightarrow\)\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)>101.\(\frac{1}{100}\)=\(\frac{101}{100}\)>1>\(\frac{3}{4}\)
\(\Rightarrow\)A >\(\frac{3}{4}\)
a) a+n/b+n=a/b
vì a+n/b+n rút gọn n ta sẽ đc a/b
b) Nhân A với 10 ta được \(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}\)
\(10A=\frac{10^{12}-10}{10^{12}-1}\)
\(10A=\frac{10^{12}-1-9}{10^{12}-1}\)
\(10A=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)
Nhân B với 10 rồi giải tương tự như A ta được
\(10B=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)
ta thấy: 1012-1>1011+1\(\Rightarrow\frac{9}{10^{12}-1}<\frac{9}{10^{11}+1}\) ( vì 2 ps cùng tử ps nào có tử bé hơn thì ps đó lớn hơn)
=>10B>10A
=>B>A
Cho a,b,c \(\in\)N* và a<b<1.Ta có:\(\frac{a}{b}<\frac{a+c}{b+c}\)
\(\Rightarrow\)a(b+c)<b(a+c)
\(\Rightarrow\)ab+ac<ba+bc
\(\Rightarrow\)ac<bc
Tiếp nè:
\(\Rightarrow\)a<b đúng
Mặt khác:\(\frac{1}{2}<\frac{1+1}{2+1}=\frac{2}{3}\)
\(\frac{3}{4}<\frac{3+1}{4+1}=\frac{4}{5}\)
\(\frac{199}{200}<\frac{199+1}{200+1}=\frac{200}{201}\)
\(\Rightarrow A<\frac{2}{3}.\frac{4}{5}...........\frac{200}{201}\)
\(\Rightarrow A^2<\frac{1}{2}.\frac{2}{3}.\frac{3}{4}............\frac{199}{200}.\frac{200}{201}\)
\(\Rightarrow A^2<\frac{1}{101}<\frac{1}{100}\)
\(\Rightarrow A<\frac{1}{10}\)
b,Chưa làm được,sorry