K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
18 tháng 7 2021

ta có 

\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)

Vậy A=B

26 tháng 8 2021

Trả lời:

\(A=-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{99^2}-\frac{1}{100^2}\)

\(=-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\right)\)

Ta có:  \(\frac{1}{2^2}< \frac{1}{1.2}\)

           \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

           \(\frac{1}{5^2}< \frac{1}{4.5}\)

            ........

          \(\frac{1}{99^2}< \frac{1}{98.99}\)

         \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\right)>-1\)

Vậy A > - 1 

26 tháng 8 2021

\(A=-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

=> A > -1

8 tháng 5 2019

A<-1/2

A<1+1/1*2+1/2*3+...+1/99*100

=>A<1+1-1/100<2

13 tháng 6 2017

ai giúp mik với 

đầu bài sai thì nói mik nha