Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{19}}\)
=> \(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
=> \(S=1-\frac{1}{2^{20}}\)
câu 1 :19
câu 2:1
câu 3:3
câu 4:4
câu 5:có chia hết cho 3 vì tổng =2046
câu 1:19
câu 2:1
câu 3:3
câu 4:4
câu 5: có chia hết cho ba vì tổng = 2046
a) 26- 3(X+1) = 17
3(X+1) = 26 - 17
3(X+1) = 9
X+1 = 9: 3
X+1 = 3
X = 3- 1
Vậy:X =2
b) 5X -8 = 23. 22
5X - 8 = 8 . 4
5X - 8 = 32
5X =32+8
5X = 40
X = 40 :5
Vậy X = 8
Trung Thu vui vẻ nha mn
\(\Rightarrow\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\)
\(\Rightarrow\) \(\frac{1}{2}A=A-\frac{1}{2}=\frac{1}{2^{10}}-\frac{1}{2}\)
Vậy \(A=\left(\frac{1}{2^{10}}-\frac{1}{2}\right):\frac{1}{2}=\frac{2}{2^{10}}-1\)
Do đó \(A+\frac{1}{2^{10}}=\frac{2}{2^{10}}-1+\frac{2}{10}=1\)