K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

=>S<1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

                                                                  =1-(1/2-1/2)-(1/3-1/3)-...-(1/99-1/99)-1/100

                                                                  =1-1/100 <1

=>S<1

Vậy S<1

18 tháng 8 2021

a. \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3-1}{3}=\dfrac{2}{3}\)\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5-3}{15}=\dfrac{2}{15}\)

b. Ta có \(VP=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\) mà \(VP=\dfrac{2}{3}\) \(\Rightarrow VT=VP\)

Ta có \(VP=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\) mà \(VP=\dfrac{2}{3.5}=\dfrac{2}{15}\) \(\Rightarrow VT=VP\)

c. \(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}+\dfrac{2}{99.101}\)

\(=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{97.99}+\dfrac{1}{99.101}\right)\)

\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=2\left(1-\dfrac{1}{101}\right)\) \(=\dfrac{200}{101}\)

a: \(\dfrac{1}{1}-\dfrac{1}{3}=1-\dfrac{1}{3}=\dfrac{2}{3}\)

\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)

b: \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)

\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)

c: Ta có: \(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

6 tháng 8 2021

Ta có  \(A=\dfrac{2}{1.3}-\dfrac{2}{2.4}+\dfrac{2}{3.5}-\dfrac{2}{4.6}+\dfrac{2}{5.7}-\dfrac{2}{6.8}+\dfrac{2}{7.9}-\dfrac{2}{8.10}+\dfrac{2}{9.11}-\dfrac{2}{10.12}\) 

\(\Rightarrow A=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)-\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+\dfrac{2}{10.12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\) 

\(\Rightarrow A=1-\dfrac{1}{11}-\dfrac{1}{2}+\dfrac{1}{12}\) 

\(\Rightarrow A=\dfrac{9}{22}+\dfrac{1}{12}\) 

\(\Rightarrow A=\dfrac{65}{132}\) 

Mà \(\dfrac{65}{132}< 1\) \(\Rightarrow A< 1\) 

Vậy \(A< 1\)

I: Để 3n+4/n+2 là số nguyên thì \(3n+4⋮n+2\)

\(\Leftrightarrow3n+6-2⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{-1;-3;0;-4\right\}\)

II: \(D=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)\)

\(D=2\cdot\left(1-\dfrac{1}{2009}\right)=2\cdot\dfrac{2008}{2009}=\dfrac{4016}{2009}\)

26 tháng 3 2019

Nhầm ,chỉ có một + 1/3.5 thôi các bạn nhé

26 tháng 2 2023

a) đặt

 \(S=1+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\\ 2S=2+\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\\ 2S=2+\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ 2S=2+1-\dfrac{1}{101}\\ 2S=\dfrac{302}{101}\\ S=\dfrac{151}{101}\)

b)

đặt

\(S=\dfrac{1}{2}+\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{98}-\dfrac{1}{101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{101}\\ 3S=\dfrac{201}{101}\\ S=\dfrac{67}{101}\)

TH
Thầy Hùng Olm
Manager VIP
26 tháng 2 2023

\(2A-1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(2A-1=1-\dfrac{1}{101}=\dfrac{100}{101}\)

\(2A=\dfrac{201}{101}\Rightarrow A=\dfrac{201}{202}\)