Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{97\cdot99}\right)+\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{98\cdot100}\right)-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)+\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{99}+\dfrac{1}{2}\cdot\dfrac{49}{100}-\dfrac{49}{99}\)
\(=\dfrac{49}{200}\)
=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100
=1-1/2-1/99-1/98=2327/4851
\(\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
\(=1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\)
\(=1-\frac{1}{2}-\frac{1}{99}-\frac{1}{98}\)
\(=\frac{2327}{4851}\)
Đặt A=1/1.3 - 1/2.4 +1/3.5 -1/4.6 +.....+1/97.99 -1/98.100
4A= 4/1.3 -4/2.4 +4/3.5 -4/4.6 +.....+4/97.99 -4/98.100
=(4/1.3 +4/3.5 +...+4/97.99) - (4/2.4 +4/4.6 +...+4/98.100)
=(1/1 -1/3+1/3-1/5+...+1/97-1/99)-(1/2 -1/4 -....1/98-1/100)
=(1/1-1/99)-(1/2-1/100)
4A=98/99 - 99/100
A= (98/99-99/100) :4
B=1.3+2.4+3.5+...+97.99+98.100
B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)
B=1.2+1+2.3+2+....+97.98+97+98.99+98
B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)
B=98.99.100/3 + 98.99/2
B=323400+4851=328251
a) A = 1.3 +2.4 + 3.5 +...+ 97.99 + 98.100
A = 1(2 + 1) + 2(3+1) + 3(4 + 1) +...+ 98(99+1)
= (1.2 + 2.3 + 3.4 +...+ 98.99) + (1 + 2 + 3 +...+ 98)
= [ 1.2.3 + 2.3.(4-1) +...+ 98.99.(100-97)] + [ 1.2 + 2.(3-1) + 3.(4-2) +... 98.(99-97)]
= [ 1.2.3 + 2.3.(4-1) - 1.2.3 + 3.4.(5-2) - 2.3.(4-1) +...+ 98.99.(100-97) - 97.98(99-96)] + [ 1.2 + 2.(3-1) - 1.2 + 3.(4-2) - 2.(3-1) +...+ 98.(99-97) - 97(98-96)]
= 98.99.100:3 + 98.99:2 = 323 400 + 4581 = 328251
b) B = 1.2.3 + 2.3.4 + 3.4.5 +...+ 48.49.50
4B = 1.2.3.4 + 2.3.4.(5-1) + 3.4.5.(6-2) +...+ 48.49.50.(51-47)
4B-B = 1.2.3.4 + 2.3.4.(5-1) - 1.2.3.4 + 3.4.5.(6-2) - 2.3.4.(5-1) +...+ 48.49.50.(51-47) - 47.48.49.(50-46)
= 48.49.50.51:4 = 1499400
=>S<1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-(1/2-1/2)-(1/3-1/3)-...-(1/99-1/99)-1/100
=1-1/100 <1
=>S<1
Vậy S<1