Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{2014}\right)\)
A = \(\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2012}{2013}x\frac{2013}{2014}\)
A = \(\frac{2x3x4x...x2012x2013}{3x4x5x...x2013x2014}\)
a = \(\frac{2}{2014}=\frac{1}{1007}\)
=\(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{2013}{2014}x\frac{2014}{2015}\)
=\(\frac{1x2x3x...x2013x2014}{2x3x4x...x2014x2015}\)
=\(\frac{1}{2015}\)
( Dau x la dau nhan)
Ta có 1+1/2014 +1/x=1/(x+1)+1+1/2013 nên 1/x-1/(x+1)=1/2013-1/(2013+1) nên x=2013
Ta có: \(\frac{1}{x}-\frac{1}{x+1}=\frac{2014}{2013}-\frac{2015}{2014}\)
<=> \(\frac{1}{x\left(x+1\right)}=\frac{2014^2-2015.2013}{2013.2014}=\frac{1}{2013.2014}\)
<=> x(x+1)=2013.2014
=> x=2013
Đáp số: x=2013
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2014}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2013}{2014}\)
\(=\frac{1}{2014}>\frac{1}{2015}\)
=>
\(\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{2016}{2015}=\frac{3x4x5x...x2016}{2x3x4x....x2015}=\frac{2016}{2}=1008\)
vay C=1008
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2015}\right)\)
\(=\left(\frac{2-1}{2}\right)\left(\frac{3-1}{3}\right)\left(\frac{4-1}{4}\right)....\left(\frac{2015-1}{2015}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2013}{2014}.\frac{2014}{2015}\)
\(=\frac{1}{2015}\)
Kết quả bằng 1/2015 nhé.