Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2015}\right)\)
\(=\left(\frac{2-1}{2}\right)\left(\frac{3-1}{3}\right)\left(\frac{4-1}{4}\right)....\left(\frac{2015-1}{2015}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2013}{2014}.\frac{2014}{2015}\)
\(=\frac{1}{2015}\)
Ta có 1+1/2014 +1/x=1/(x+1)+1+1/2013 nên 1/x-1/(x+1)=1/2013-1/(2013+1) nên x=2013
Ta có: \(\frac{1}{x}-\frac{1}{x+1}=\frac{2014}{2013}-\frac{2015}{2014}\)
<=> \(\frac{1}{x\left(x+1\right)}=\frac{2014^2-2015.2013}{2013.2014}=\frac{1}{2013.2014}\)
<=> x(x+1)=2013.2014
=> x=2013
Đáp số: x=2013
\(1\frac{1}{2}x1\frac{1}{3}x1\frac{1}{4}x..........x1\frac{1}{2015}\)
\(=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x.........x\frac{2016}{2015}\)
\(=\frac{2016}{2}=1008\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2015}\right)\times\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2014}{2015}\times\frac{2015}{2016}\)
\(=\frac{1}{2016}\)
Giải : Ta có (1-1/2)*(1-1/3)*(1-1/4)*....*(1-1/2015)*(1-1/2016)
= 1* -(1/2+1/3+1/4+....+1/2015+1/2016)
= 1* - (1/2+1/2016 +1/3+1/2015 +...+1/1007)
= 1* -(1/2033134)
= -1/2033134
a)\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}......\frac{99}{100}\)
\(=\frac{1.2.3.4.....99}{2.3.4.5.6.....100}\)
\(=\frac{1}{100}\)
b) Tương tự như câu a
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2014}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2013}{2014}\)
\(=\frac{1}{2014}>\frac{1}{2015}\)