Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=2x^2+x+1\)
b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)
c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)
\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)
d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)
\(=x^2-2x-5\)
Bạn ơi xem lại hộ mk đề bài phần b với ạ, mk thấy có j đó sai sai😿😿
\(A\left(x\right)-B\left(x\right)=2x^3+4x^2-x-1-\left(2x^3-2x^2-x-3\right)\\ =2x^3+4x^2-x-1-2x^3+2x^2+x+3\\ =\left(2x^3-2x^3\right)+\left(4x^2+2x^2\right)+\left(x-x\right)+\left(3-1\right)=6x^2+2\)
A(x)+B(x)
=2x^3+4x^2-x-1+2x^3-2x^2-x-3
=4x^3+2x^2-2x-4
Tìm x biết:
a) 3x-|2x+1|=2
b)2.|5x-3|-2x=14
c)|x+1|+|x+2|+|x+3|=4x
d)|x-2|+|3-2x|=2x+1
e)|x-3|=(-2).|x+4|
a) |5x - 1| - x = 2x + 3
<=> |5x - 1| = 2x + 3 + x
<=> |5x - 1| = 3x + 3
<=> 5x - 1 = 3x + 3 hoặc 5x - 1 = -(3x + 3)
5x - 1 - 3x = 3 5x - 1 + 3x = -3
2x - 1 = 3 8x - 1 = -3
2x = 3 + 1 8x = -3 + 1
2x = 4 8x = -2
x = 2 x = -2/8 = -1/4
=> x = 2 hoặc x = -1/4
b) Ta có: |2x + 1| \(\ge\)0 \(\forall\)x
|x - 3| \(\ge\)0 \(\forall\)x
|2x+ 3| \(\ge\)0 \(\forall\)x
=> |2x + 1| + |x - 3| + |2x + 3| \(\ge\)0 \(\forall\)x
=> x - 5 \(\ge\)0 \(\forall\)x => x \(\ge\)5 \(\forall\)x
Với x \(\ge\)5
=> 2x + 1 + x - 3 + 2x + 3 = x - 5
=> 4x + 1 = x - 5
=> 4x - x = -5 - 1
=> 3x = -6
=> x = -2 (ktm)
Vậy ko có giá trị thõa mãn
Với mọi \(x\) ta luôn luôn có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|3-2x\right|\ge0\end{cases}}\Rightarrow\left|x-2\right|+\left|3-2x\right|\ge0\Rightarrow2x+1\ge0\Rightarrow x\ge\frac{-1}{2}\)
Trường hợp 1: \(x< \frac{3}{2}\)
\(\left|x-2\right|+\left|3-2x\right|=2x+1\)
\(\Rightarrow2-x+3-2x=2x+1\)
\(\Rightarrow5-3x=2x+1\)
\(\Rightarrow-3x-2x=1-5\)
\(\Rightarrow-5x=-4\)
\(\Rightarrow x=\frac{4}{5}\) (Thoả mãn)
Trường hợp 2: \(x>2\)
\(\left|x-2\right|+\left|3-2x\right|=2x+1\)
\(\Rightarrow x-2+2x-3=2x+1\)
\(\Rightarrow3x-5=2x+1\)
\(\Rightarrow x=6\) (Thoả mãn)
Trường hợp 3: \(\frac{3}{2}\le x\le2\)
\(\left|x-2\right|+\left|3-2x\right|=2x+1\)
\(\Rightarrow2-x+2x-3=2x+1\)
\(\Rightarrow-1+x=2x+1\)
\(\Rightarrow-1-1=2x-x\)
\(\Rightarrow x=-2\) (Loại)
\(\left|x\right|=2x-1\)
\(\Rightarrow\orbr{\begin{cases}x=2x-1\\x=1-2x\end{cases}}\Rightarrow\orbr{\begin{cases}-x=-1\\3x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)