Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) \(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{1}{2}+\frac{1}{3}=\frac{9}{12}+\frac{6}{12}+\frac{4}{12}=\frac{19}{12}\)
b) \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)
\(=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}\)
\(=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}\)
\(=5+1+0,5=6,5\)
2) a) 1/2 + 2/3x = 1/4
=> 2/3x = 1/4 - 1/2
=> 2/3x = -1/4
=> x = -1/4 : 2/3
=> x = -3/8
b) 3/5 + 2/5 : x = 3 1/2
=> 3/5 + 2/5 : x = 7/2
=> 2/5 : x = 7/2 - 3/5
=> 2/5 : x = 29/10
=> x = 2/5 : 29/10
=> x = 4/29
c) x+4/2004 + x+3/2005 = x+2/2006 + x+1/2007
=> x+4/2004 + 1 + x+3/2005 + 1 = x+2/2006 + 1 + x+1/2007 + 1
=> x+2008/2004 + x+2008/2005 = x+2008/2006 + x+2008/2007
=> x+2008/2004 + x+2008/2005 - x+2008/2006 - x+2008/2007 = 0
=> (x+2008). (1/2004 + 1/2005 - 1/2006 - 1/2007) = 0
Vì 1/2004 + 1/2005 - 1/2006 - 1/2007 khác 0
Nên x + 2008 = 0 <=> x = -2008
Vậy x = -2008
1,a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{2}{4}+\frac{1}{3}=\frac{5}{4}+\frac{1}{3}=\frac{15}{12}+\frac{4}{12}=\frac{19}{12}\)
b, \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}=5+1+\frac{1}{2}=\frac{13}{2}\)2,a,\(\frac{1}{2}+\frac{2}{3}.x=\frac{1}{4}\)
<=>\(\frac{2}{3}.x=-\frac{1}{2}\)
<=>\(x=-\frac{3}{4}\)
b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)
<=>\(\frac{2}{5x}=\frac{29}{10}\)
<=>\(x=\frac{29}{4}\)
c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)
<=> \(\frac{x+4}{2004}+1+\frac{x+3}{2005}+1=\frac{x+2}{2006}+1+\frac{x+1}{2007}+1\)
<=>\(\frac{x+2008}{2004}+\frac{x+2008}{2005}=\frac{x+2008}{2006}+\frac{x+2008}{2007}\)
<=>\(\left(x+2008\right)\left(\frac{1}{2004}+\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)\)=0
<=>x+2008=0 vì cái ngoặc còn lại\(\ne0\)
<=>x=-2008
Vậy x=-2008
Bạn nhớ tk cho mình vì mình đã chăm chỉ làm hết bài bạn hỏi nha!
Đặt S = \(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\)
=> 24S = 16S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}\)
=> 16S - S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}-\left(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\right)\)
=> 15S = \(2^3-\frac{1}{2^{101}}\)
=> S = \(\frac{2^3-\frac{1}{2^{101}}}{15}\)
Khi đó A = \(\frac{2^3-\frac{1}{2^{101}}}{15}:\left(2^3-\frac{1}{2^{101}}\right)=\frac{1}{15}\)
a)\(\left(0,25^{10}\right).4^{10}.\sqrt{5^2-3^2}=\left(0,25.4\right)^{10}.\sqrt{25-9}=1^{10}.\sqrt{16}=1.4=4\)
b)\(\frac{\left(-3\right)^6.15^5+9^3.\left(-15\right)^6}{\left(-3\right)^{10}.5^5.2^3}=\frac{3^6.15^5+3^6.15^6}{3^{10}.5^5.2^3}=\frac{3^6.15^5.\left(1+15\right)}{3^{10}.5^5.2^3}\)\(=\frac{3^{11}.5^5.16}{3^{10}.5^5.2^3}=3.2=6\)
2)a)\(4-\left|x+\frac{2}{3}\right|=-1\Rightarrow\left|x+\frac{2}{3}\right|=5\Rightarrow\orbr{\begin{cases}x+\frac{2}{3}=5\\x+\frac{2}{3}=-5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=\frac{-17}{3}\end{cases}}\)
b)\(\frac{x-2}{-9}=\frac{16}{2-x}\Rightarrow\left(x-2\right)^2=144\Rightarrow\orbr{\begin{cases}x-2=12\\x-2=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=14\\x=-10\end{cases}}}\)
c)\(\frac{2}{3}x+\frac{1}{7}=\frac{5}{3}\Rightarrow\frac{2}{3}x=\frac{32}{21}\Rightarrow x=\frac{16}{7}\)
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Vậy \(x\in\left\{\pm7\right\}\)
Ta có:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\right)\)
\(A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}-1-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{99}{2^{99}}-\frac{100}{2^{100}}\)
\(A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(A=1+\frac{3}{4}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(\Rightarrow A=1+\frac{3}{4}+B-\frac{100}{2^{99}}\) (1)
Ta có:
\(B=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}...+\frac{1}{2^{99}}\)
\(\Rightarrow2B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}...+\frac{1}{2^{98}}\)
\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(B=\frac{1}{2^2}+\left(\frac{1}{2^3}-\frac{1}{2^3}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)
\(B=\frac{1}{4}+0+0+...+0-\frac{1}{2^{99}}\)
\(B=\frac{1}{4}-\frac{1}{2^{99}}\)
Từ (1)
\(\Rightarrow A=1+\frac{3}{4}+\left(\frac{1}{4}-\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(A=\frac{7}{4}+\frac{1}{4}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(A=2-\frac{2}{2^{100}}-\frac{100}{2^{100}}\)
\(A=2-\frac{102}{2^{100}}\)
Vậy \(A=2-\frac{102}{2^{100}}\)
a)\(-\frac{2}{5}+\frac{2}{3}x+\frac{1}{6}x=-\frac{4}{5}\Leftrightarrow\frac{5}{6}x=-\frac{2}{5}\Leftrightarrow x=-\frac{12}{25}\)
Vậy nghiệm là x = -12/25
b)\(\frac{3}{2}x-\frac{2}{5}-\frac{2}{3}x=-\frac{4}{15}\Leftrightarrow\frac{5}{6}x=\frac{2}{15}\Leftrightarrow x=\frac{4}{25}\)
Vậy nghiệm là x = 4/25
c)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)\(\Leftrightarrow x=-1\)
Vậy nghiệm là x = -1
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)