Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét trường hợp giống câu kia đi :
Gợi ý :
Th1 : \(\left|x-\frac{3}{4}\right|\ge0\)
Th2 \(\left|x-\frac{3}{4}\right|< 0\)
\(\Leftrightarrow-\frac{1}{6}< -\frac{1}{3}x+2< \frac{1}{6}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}x+2>-\frac{1}{6}\\-\frac{1}{3}x+2< \frac{1}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{13}{2}\\x>\frac{11}{2}\end{cases}\Leftrightarrow\frac{11}{2}< x< \frac{13}{2}}\)
vậy
Xét 2 Th nha :
Th1 : \(\left|-\frac{1}{3}x+2\right|< 0\)
PT trở thành : \(\frac{1}{3}x-2< \frac{1}{6}\)
\(\Rightarrow\frac{1}{3}x< \frac{13}{6}\)
\(\Rightarrow x< \frac{13}{2}\)
Th2 : \(\left|-\frac{1}{3}x+2\right|\ge0\)
\(\Rightarrow\frac{-1}{3}x+2< \frac{1}{6}\)
\(\Rightarrow\frac{-1}{3}x< \frac{-11}{6}\)
\(\Rightarrow x>\frac{11}{2}\)
Tự kết luận nha . Nhớ xét điều kiện nha
a) \(\left(x+\frac{1}{3}\right)^3=\frac{-8}{27}\)
\(\left(x+\frac{1}{3}\right)^3=\left(\frac{-2}{3}\right)^3\)
\(x+\frac{1}{3}=\frac{-2}{3}\)
\(x=-1\)
b) \(\left(\frac{1}{3}x+\frac{4}{3}\right)^2=\frac{25}{9}\)
\(\left(\frac{1}{3}x+\frac{4}{3}\right)^2=\left(\frac{5}{3}\right)^2\)
\(\frac{1}{3}x+\frac{4}{3}=\frac{5}{3}\)
\(\frac{1}{3}x=\frac{1}{3}\)
\(x=1\)
c) \(2^x+2^{x+1}=24\)
\(2^x+2^x.2=24\)
\(2^x.\left(1+2\right)=24\)
\(2^x.3=24\)
\(2^x=8\)
\(2^x=2^3\)
\(x=3\)
a, (x+1/3)^3 = -8/27
=>(x+1/3)^3 = (-2/3)^3
=>x+1/3 = -2/3
=>x = -1
b, (1/3x+4/3)^2 = 25/9
=>(1/3x+4/3)^2 = (5/3)^2
=>(1/3x+4/3) = 5/3
=>1/3x = 1/3
=> x = 1
c, 2^x + 2^x+1 = 24
=>2^x + 2^x . 2 = 24
=>2^x.(1+2) = 24
=>2^x . 3 = 24
=>2^x =8
=>2^x = 2^3
=> x = 3
\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Rightarrow-\frac{13}{3}.\left(\frac{3}{6}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)
\(\Rightarrow-\frac{13}{3}.\frac{2}{6}\le x\le-\frac{2}{3}.\frac{-11}{12}\)
\(\Rightarrow\frac{-13}{9}\le x\le\frac{11}{18}\)
\(\Rightarrow\frac{-26}{18}\le x\le\frac{11}{18}\)
=> -1,44444444444........... ≤ x ≤ 0,6111111111...........
Mà x ∈ Z
=> x ∈ { -1 ; 0 }