Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức F(x) có nhiều nhất 3 nghiệm
f(x) = \(x\left(2x^2-8x+9\right)=0\)
TH1: x= 0
TH2: \(2x^2-8x+9=0\)
\(\Delta=\left(-8\right)^2-4.1.9=28>0\)
Vậy PT có 2 nghiệm x1 = \(\frac{8+\sqrt{28}}{2}\) ; x2 = \(\frac{8-\sqrt{28}}{2}\)
Vậy F(x) có 3 nghiệm lần lượt là
x1 = 0 ; x2 = \(\frac{8+\sqrt{28}}{2}\) ; x3 = \(\frac{8-\sqrt{28}}{2}\)
Đa thức có nghiệm \(\Rightarrow\Delta'=a^2-\left(2a^2+b^2-5\right)\ge0\)
\(\Rightarrow a^2+b^2\le5\)
\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1=\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}+a+b+1\)
\(P\ge\dfrac{\left(a+b\right)^2-5}{2}+a+b+1=\dfrac{1}{2}\left(a+b+1\right)^2-2\ge-2\)
\(P_{min}=-2\) khi \(\left\{{}\begin{matrix}a^2+b^2=5\\a+b+1=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;-1\right);\left(-1;2\right)\)
Thay x=1/2 vào P(x): \(a+\frac{19}{16}=0\)\(\Leftrightarrow a=\frac{-19}{16}\)
Thay x=1/2 vào Q(x):\(b+\frac{9}{16}=0\Leftrightarrow b=\frac{-9}{16}\)
Cho Q(x)=x3+ax2+bx+cQ(x)=x3+ax2+bx+c. Biết Q(1)=−15,Q(2)=−15,Q(3)=−9Q(1)=−15,Q(2)=−15,Q(3)=−9 . Tìm số dư khi chia Q(x) cho (x-4)
bạn có thể giait giup mk ko
Bậc nhỏ nhất của đa thức \(P\left(x\right)\)là \(3.2=6\).
\(x=\sqrt[3]{2}+\sqrt{2}\)
\(\Leftrightarrow x-\sqrt{2}=\sqrt[3]{2}\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)^3=2\)
\(\Leftrightarrow x^3-3\sqrt{2}x^2+6x-2\sqrt{2}=2\)
\(\Leftrightarrow x^3+6x-2=3\sqrt{2}x^2+2\sqrt{2}\)
\(\Leftrightarrow\left(x^3+6x-2\right)^2=2\left(3x^2+2\right)^2\)
\(\Leftrightarrow x^6+36x^2+4+12x^4-24x-4x^3=18x^4+24x^2+8\)
\(\Leftrightarrow x^6-6x^4-4x^3+12x^2-24x-4=0\)
\(P\left(x\right)=x^6-6x^4-4x^3+12x^2-24x-4\)
Nếu đa thức trên có nghiệm hữu tỉ thì nghiệm có có dạng \(\frac{p}{q}\)với \(p\)là ước của \(-4\)và \(q\)là ước của \(1\).
Nên có thể là các giá trị \(\left\{-4,-2,-1,1,2,4\right\}\).
Ta thử các giá trị trên đều thấy không phải là nghiệm của \(P\left(x\right)\).
Do đó đa thức đó không có nghiệm hữu tỉ.
Ta có:
\(a=\sqrt{3}-\sqrt{3-\sqrt{13-2\sqrt{12}}}=\sqrt{3}-\sqrt{3-\sqrt{\left(\sqrt{12}-1\right)^2}}\)
\(=\sqrt{3}-\sqrt{3-\sqrt{12}+1}=\sqrt{3}-\sqrt{4-2\sqrt{3}}=\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-\sqrt{3}+1\)
nên \(a=1\)
Vì \(a\) là nghiệm của đa thức \(P\left(x\right)\) nên nhất định rằng \(P\left(x\right)\) sẽ chứa một nhân tử chung có dạng \(a-1\)
Ta biểu diễn lại đa thức \(P\left(x\right)\) như sau:
\(P\left(x\right)=x^9-17x^8+m=\left(a-1\right)A\)
\(\Rightarrow\) \(P\left(1\right)=1^9-17.1^8+m=\left(1-1\right)A=0\)
Hay nói cách khác, ta suy ra được \(m=16\)
a)P(x) có nghiệm <=>P(x)=0
=>3-2x=0
2x=3
x=\(\frac{3}{2}\)
vậy x=\(\frac{3}{2}\) là nghiệm của P(x)
b)Q(x) ko có nghiệm đâu nhá