Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
Theo đề bài ta có \(\frac{a}{b}< 1\).
\(\Rightarrow\frac{a+m}{b+m}< 1\)(vì \(\frac{a}{b}< 1\))
Khi \(\frac{a+m}{b+m}< 1\)ta có \(\frac{a}{b}+m\)
\(\Leftrightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có: \(\frac{a+m}{b+m}\) = \(\frac{\left(a+m\right).b}{b\left(b+m\right)}\) = \(\frac{ab+bm}{b\left(b+m\right)}\) và \(\frac{a}{b}\) = \(\frac{a.\left(b+m\right)}{b\left(b+m\right)}\)= \(\frac{ab+am}{b\left(b+m\right)}\)
Ta có: \(\frac{a}{b}\) < 1 => a<b => am<bm ( m \(\ne\) 0) => ab+ am< ab+bm
=> \(\frac{ab+bm}{b\left(b+m\right)}\) > \(\frac{ab+am}{b\left(b+m\right)}\) => \(\frac{a+m}{b+m}\) > \(\frac{a}{b}\)
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
xét BNC với ABC
có AN=1/4 AB mà AN+NC=AC => NC=3/4 AC
chung chiều cao hạ từ b xuống AC
=> Sbnc=3/4 Sabc
Sbnc là 100x3/4 = tự tính
=> \(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=> \(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1)=4
Mà m-1 lẻ => \(m-1\varepsilon\) \(Ư\) lẻ của 4 = { -1; 1}
=> m \(\varepsilon\) { 0; 2 }
=> n \(\varepsilon\) { -4; 4 }