Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
* Trả lời :
\(a,\frac{21}{36}=\frac{7}{12}\)
\(b,\frac{23}{73}\)là phân số đã tối giản
Dù đăng cách đây lâu rồi nhưng vẫn thích làm bài anh Tú đăng :P
Theo đề bài ta có:
\(\dfrac{a}{b}_{MIN}\)
\(\Rightarrow a_{MIN};b_{MAX}\)
\(\dfrac{a}{b}:\dfrac{9}{14}=N\Rightarrow\dfrac{a}{b}.\dfrac{14}{9}=N\Rightarrow a\in B\left(9\right);b\inƯ\left(14\right)\)
\(\dfrac{a}{b}:\dfrac{21}{35}=N\Rightarrow\dfrac{a}{b}.\dfrac{35}{21}=N\Rightarrow a\in B\left(21\right);b\inƯ\left(35\right)\)
\(a_{MIN}\Rightarrow a\in BCNN\left(9;21\right)\Rightarrow a=63\)
\(b_{MAX}\Rightarrow b\in UCLN\left(14;35\right)\Rightarrow b=7\)\(\)
Phân số cần tìm là \(\dfrac{63}{7}\)
a) Không thể khẳng định \(\frac{a}{21}\)là phân số tối giản vì nếu \(a=3;a=7\)là số nguyên tố thì phân số chưa tối giản
\(\cdot a=3\Rightarrow\frac{3}{21}=\frac{1}{7}\)\(\cdot a=7\Rightarrow\frac{7}{21}=\frac{1}{3}\)
b) Để \(\frac{a}{21}\)là phân số tối giản thì \(a\ne3;7;21\). Mà \(a< 21\)nên \(S_a=\left(0;1;2;4;5;6;8;9;10;11;12;13;14;15;16;17;18;19;20\right)\)