Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)
Theo đề bài:
\(a+b+3ab=1\)
\(\Leftrightarrow4\left(a+b\right)+12ab=4\)
\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)
\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)
\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)
\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)
\(\Leftrightarrow a+b\ge\frac{2}{3}\)
`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)
Áp dụng các kết quả trên, ta có:
\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)
\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)
Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)
\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)
Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)
Lời giải:
$1=a+b+3ab\leq (a+b)+3.\frac{(a+b)^2}{4}$
$\Rightarrow a+b\geq \frac{2}{3}$
$\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2}{9}$
\(p=\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{1-(a+b)}{a+b}=\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{1}{a+b}-1\)
\(\leq \sqrt{(1-a^2+1-b^2)(1+1)}+\frac{1}{\frac{2}{3}}-1=\sqrt{2(2-a^2-b^2)}+\frac{1}{2}\)
Mà \(2-a^2-b^2\leq 2-\frac{2}{9}=\frac{16}{9}\)
Do đó:
\(P\leq \sqrt{\frac{32}{9}}+\frac{1}{2}=\frac{3+8\sqrt{2}}{6}\) và đây chính là giá trị max.
SKY WARS:
Đặt $a+b=t$ thì:
$1\leq t+\frac{3}{4}t^2$
$\Leftrightarrow 4\leq 4t+3t^2$
$\Leftrightarrow 3t^2+4t-4\geq 0$
$\Leftrightarrow (3t-2)(t+2)\geq 0$
Vì $t>0$ nên $3t-2\geq 0\Rightarrow t\geq \frac{2}{3}$
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
Áp dụng bất đẳng thức Cô - si, ta có:
\(a\sqrt{b-1}=a\sqrt{\left(b-1\right).1}\le a.\frac{b-1+1}{2}=\frac{ab}{2}\)(1)
\(b\sqrt{a-1}=b\sqrt{\left(a-1\right).1}\le b.\frac{a-1+1}{2}=\frac{ab}{2}\)(2)
Từ (1) và (2) suy ra \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
\(\Rightarrow\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}\ge\frac{6}{ab}\)(Đẳng thức xảy ra khi a = b = 2)
\(VT=\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}\)
\(=\frac{18}{3ab}+\sqrt{3ab+4}\)
Đặt \(t=\sqrt{3ab+4}\Rightarrow3ab=t^2-4\). Khi đó\(VT\ge\frac{18}{t^2-4}+t=\frac{18}{\left(t+2\right)\left(t-2\right)}+\frac{3}{4}\left(t-2\right)\)
\(+\frac{1}{4}\left(t+2\right)+1\ge3\sqrt[3]{18.\frac{3}{4}.\frac{1}{4}}+1=\frac{11}{2}\)
Đẳng thức xảy ra khi t = 4 hay a = b = 2
Áp dụng BĐT AM-GM ta có:
\(\sqrt{b-1}=\sqrt{1\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)
Tương tự với \(b\sqrt{a-1}\)ta được
\(\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}=\frac{18}{3ab}+\sqrt{3ab+4}\)
Vậy ta cần chứng minh
\(\frac{18}{3ab}+\sqrt{3ab+4}\ge\frac{11}{2}\)
Vì a,b đều lớn hơn 1 nên ta đặt \(t=\sqrt{3ab+4}>0\)khi đó bđt cần chứng minh trở thành
\(\frac{18}{t^2-4}+t\ge\frac{11}{2}\)
<=> \(\frac{\left(2t+5\right)\left(t-4\right)^2}{t^2-4}\ge0\)
Vậy t>=4
BĐT xảy ra khi a=b=1
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
5/ĐK: \(\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)
PT \(\Leftrightarrow2\left(x^2-4x-6\right)+\sqrt{x^2-4x-5}-1=0\)
\(\Leftrightarrow\left(x^2-4x-6\right)\left(2+\frac{1}{\sqrt{x^2-4x-5}+1}\right)=0\)
\(\Leftrightarrow x^2-4x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{matrix}\right.\)
Vậy..