K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

Áp dụng bất đẳng thức Cô - si, ta có:

 \(a\sqrt{b-1}=a\sqrt{\left(b-1\right).1}\le a.\frac{b-1+1}{2}=\frac{ab}{2}\)(1)

\(b\sqrt{a-1}=b\sqrt{\left(a-1\right).1}\le b.\frac{a-1+1}{2}=\frac{ab}{2}\)(2)

Từ (1) và (2) suy ra \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

\(\Rightarrow\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}\ge\frac{6}{ab}\)(Đẳng thức xảy ra khi a = b = 2)

\(VT=\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}\)

\(=\frac{18}{3ab}+\sqrt{3ab+4}\)

Đặt \(t=\sqrt{3ab+4}\Rightarrow3ab=t^2-4\). Khi đó\(VT\ge\frac{18}{t^2-4}+t=\frac{18}{\left(t+2\right)\left(t-2\right)}+\frac{3}{4}\left(t-2\right)\)

\(+\frac{1}{4}\left(t+2\right)+1\ge3\sqrt[3]{18.\frac{3}{4}.\frac{1}{4}}+1=\frac{11}{2}\)

Đẳng thức xảy ra khi t = 4 hay a = b = 2

25 tháng 4 2020

Áp dụng BĐT AM-GM ta có:

\(\sqrt{b-1}=\sqrt{1\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)

Tương tự với \(b\sqrt{a-1}\)ta được

\(\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}=\frac{18}{3ab}+\sqrt{3ab+4}\)

Vậy ta cần chứng minh

\(\frac{18}{3ab}+\sqrt{3ab+4}\ge\frac{11}{2}\)

Vì a,b đều lớn hơn 1 nên ta đặt \(t=\sqrt{3ab+4}>0\)khi đó bđt cần chứng minh trở thành

\(\frac{18}{t^2-4}+t\ge\frac{11}{2}\)

<=> \(\frac{\left(2t+5\right)\left(t-4\right)^2}{t^2-4}\ge0\)

Vậy t>=4

BĐT xảy ra khi a=b=1