K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

xét \(\frac{a}{n.\left(n+a\right)}=\frac{\left(n+a\right)-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

vậy ............................

8 tháng 2 2019

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)

                                      \(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)

                                      \(=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

21 tháng 1 2017

Ta có \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) (đpcm)

Áp dụng công thức trên ta có

A\(=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot\cdot\cdot\cdot\cdot+\frac{1}{2015\cdot2016\cdot2017}\)

\(\Leftrightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2015\cdot2016\cdot2017}\)

\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{2}{3\cdot4}+....+\frac{1}{2015\cdot2016}-\frac{1}{2016\cdot2017}\)

\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\)

\(\Rightarrow A=\left(\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\right)\div2\approx0.25\)

Vậy A\(\approx0.25\)

3 tháng 9 2017

a) \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

b) \(\frac{1}{q}\left(\frac{1}{n}-\frac{1}{n+q}\right)=\frac{1}{q}\left(\frac{n+q}{n\left(n+q\right)}-\frac{n}{n\left(n+q\right)}\right)=\frac{1}{q}.\frac{q}{n\left(n+q\right)}=\frac{1}{n\left(n+q\right)}\)

3 tháng 9 2017

a/  Xét mẫu số VP_  n và n+1 là 2 số liên tiếp 

\(\Rightarrow\left(n,n+1\right)\)bằng 1

Thay vào đề bài     \(\frac{1}{n}-\frac{1}{n+1}\)bằng   \(\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}\)bằng \(\frac{1}{n\cdot\left(n+1\right)}\)

\(\Rightarrowđpcm\)

P/s _laptop ko gõ đc dấu

1 tháng 5 2018

\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{a}{n.\left(n+a\right)}\) 

\(\left(đpcm\right)\)

Chúc bạn học tốt !!!!