Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a-2015; b-2015; c-2015 là 3 số nguyên liên tiếp=> a+1=b; a+2=c
ta có:(a-2015)+(b-2015)+ (c-2015) =2016
=>(a-2015)+(a+1-2015)+(a+2-2015)=2016
=>(a*-2015)+(a-2014)+(a-2013)=2016
=>3a-(2015+2014+2013)=2016
=>3a-6042=2016
=>3a=2016+6042=8058
=>a=8058:3=2686
=>b=2686+1=2687
=>c=2686+2=2688
Ta có :
\(A=2016.2016.....2016=2016^{2015}\)
\(B=2017.2017.....2017\)
\(B=2017^{2016}\)
\(B=\left(2016+1\right)^{2016}\)
\(B=2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}+2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}.2017+4033\)
Lại có :
\(2016^{2015}\) luôn có chữ số tận cùng là \(6\)
\(\Rightarrow\)\(2016^{2015}.2017\) có chữ số tận cùng là \(2\)
\(\Rightarrow\)\(2016^{2015}.2017+4033\) có chữ số tận cùng là \(5\)
Do đó :
\(A+B\) chia hết cho \(5\)
Vậy \(A+B\) chia hết cho \(5\)
Chúc bạn học tốt ~