Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x2 - 4(x2 - 2x + 1) - 5 = 0
=> 5x2 - 4x2 + 8x - 4 - 5 = 0
=> x2 + 8x - 9 = 0
=> x2 + 9x - x - 9 = 0
=> x(x + 9) - (x + 9) = 0
=> (x + 9)(x - 1) = 0
=> x + 9 = 0 => x = -9
hoặc x - 1 = 0 = > x = 1
Vậy x = -9, x = 1
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\left(5x^2-5\right)-4\left(x^2-2.1.x+1^2\right)=0\)
\(5\left(x^2-1\right)-4\left(x-1\right)^2=0\)
\(5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)\left(x-1\right)=0\)
\(\left[5\left(x+1\right)-4\left(x-1\right)\right]\left(x-1\right)=0\)
\(\left(5x+5-4x+4\right)\left(x-1\right)=0\)
\(\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-9\\x=1\end{cases}}.\)
a) (x-3)3-3+x=0
=> (x-3)3+(x-3)=0
=> (x-3)(x2-6x+10)
=> \(\left[{}\begin{matrix}x-3=0\\x^2-6x+10=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\\left(x-3\right)^2=1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)
\(5\left(x-3\right)+\left(x-2\right)\left(5x-1\right)=5x^2\)
\(\Leftrightarrow5x-15-\left(5x^2-11x+2\right)=5x^2\)
\(\Leftrightarrow5x-15-5x^2+11x-2=5x^2\)
\(\Leftrightarrow-10x^2+16x-17=0\)
\(\cdot\Delta=16^2-4.\left(-10\right).\left(-17\right)=-304< 0\)
Vậy pt vô nghiệm
Bài 2:
\(2x^3+6x^2=x^2+3x\)
\(\Rightarrow2x^3+6x^2-x^2-3x=0\)
\(\Rightarrow2x^3+5x^2-3x=0\)
\(\Rightarrow x\left(2x^2+5x-3\right)=0\)
\(\Rightarrow x\left(2x^2-x+6x-3\right)=0\)
\(\Rightarrow x\left[x\left(2x-1\right)+3\left(2x-1\right)\right]=0\)
\(\Rightarrow x\left(x+3\right)\left(2x-1\right)=0\)
=>x=0 hoặc x=-3 hoặc x=1/2
1)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
Tới đây b cho từng cái = 0 rồi giải ra tìm x nha :)
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
Trả lời:
Bài 2:
a, \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
Vậy ...
b, \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2000=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2000\end{cases}}\)
Vậy ...
c, \(2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}\)
Vậy ...
d, \(\left(x+1\right)=\left(x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
Vậy ...
Trả lời:
Bài 1:
\(C=x-x^2=-\left(x^2-x\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTLN của C = 1/4 khi x = 1/2
\(E=4x^2+8x+y^2-4y+32=\left(2x\right)^2+8x+y^2-4y+4+4+24\)
\(=\left[\left(2x\right)^2+8x+4\right]+\left(y^2-4y+4\right)+24=\left(2x+2\right)^2+\left(y-2\right)^2+24\ge24\forall x\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+2=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Vậy GTNN của E = 24 khi x = - 1; y = 2
a: \(5x-20x^2=0\)
\(\Leftrightarrow5x\left(1-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
c: \(x\left(x-3\right)-5x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)