Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)
\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)
\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)
\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)
\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)
b/ Thế vô rồi tính nhé
Đoạn gần cuối thay y-x= 1 luôn
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)
\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\) giờ mới thay không biết đã tối giản chưa
d) \(\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+3\right)}=\frac{1}{\left(x+2\right)\left(x+3\right)}\)
ĐKXĐ : \(x\ne-2;x\ne-3\)
\(\Leftrightarrow x+3+x+2=1\)
\(\Leftrightarrow2x=-4\)
\(\Leftrightarrow x=-2\) (không nhận)
Vậy : \(S=\varnothing\)
Giai phương trình sau :
a) \(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{3}{1-x}=\frac{5}{x+5}\)
ĐKXĐ : \(x\ne1;x\ne-5\)
Với điều kiện trên ta có :
\(\Leftrightarrow\)\(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{-3}{x-1}=\frac{5}{x+5}\)
\(\Leftrightarrow10-3\left(x+5\right)=5\left(x-1\right)\)
\(\Leftrightarrow10-3x-15=5x-5\)
\(\Leftrightarrow-8x=0\)
\(\Leftrightarrow x=0\) (nhận)
Vậy : \(S=\left\{0\right\}\)
b) Ta có: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
⇔\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)-\left(x+1\right)^3=0\)
⇔\(x^3-6x^2+12x-8+9x^2-1-\left(x^3+3x^2+3x+1\right)=0\)
⇔\(x^3+3x^2+12x-9-x^3-3x^2-3x-1=0\)
⇔\(9x-10=0\)
hay 9x=10
⇔\(x=\frac{10}{9}\)
Vậy: \(x=\frac{10}{9}\)
c) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
⇔\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{5}=0\)
⇔\(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{3\left(x+7\right)}{15}=0\)
⇔\(3\left(2x-1\right)-5\left(x-2\right)-3\left(x+7\right)=0\)
⇔\(6x-3-5x+10-3x-21=0\)
⇔\(-2x-14=0\)
⇔\(-2x=14\)
hay x=-7
Vậy: x=-7
d) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
⇔\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
⇔\(\frac{6\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
⇔\(6x-18+7x-35-13x-4=0\)
⇔\(-21\ne0\)
Vậy: x∈∅
e) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
⇔\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}-\frac{\left(x+10\right)\left(x-2\right)}{3}=0\)
⇔\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{3\left(x+4\right)\left(2-x\right)}{12}-\frac{4\left(x+10\right)\left(x-2\right)}{12}=0\)
⇔\(x^2+14x+40-\left(3x+12\right)\left(2-x\right)-\left(4x+40\right)\left(x-2\right)=0\)
⇔\(x^2+14x+40-\left(24-6x-3x^2\right)-\left(4x^2+32x-80\right)=0\)
⇔\(x^2+14x+40-24+6x+3x^2-4x^2-32x+80=0\)
⇔\(-12x+96=0\)
⇔\(-12x=-96\)
hay x=8
Vậy: x=8