K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2015

a)1230;7230

b)3240;1242;8244;6246;2248

12 tháng 10 2016

a, 23850

b,11850 hoặc 14850 hoặc 17850

c,14400 ; 14430 ;14460 ; 14490 ; 14415 ; 14445 ; 14475

d,5274

12 tháng 10 2016

23x5y chia hết cho 2,5,9

Do 23x5y chia hết cho 2 và 5

\(\Rightarrow y=0\)

Thay y = 0 ta có:

23x50 chia hết cho 9

=> 2+3+x+5+0 chia hết cho 9

=> 10+x chia hết cho 9

=> x=8

Vậy số càn ìm là 23850

b) 1x85y chia hết cho 2,3,5

1x85y chia hết cho 2,5

=> y=0

Thay y=0 ta có:

1x850 chia hết cho 3

=> 1+x+8+5+0 chia hết cho 3

=> 13+x chia hết cho 3

\(\Rightarrow x\in\left\{2;5;8\right\}\)

Vậy các số cần tìm là 12850,15850,18850

c) 144xy chia hết cho 3,5

Vì 144xy chia hết cho 5

\(\Rightarrow y\in\left\{0;5\right\}\)

  • Nếu y = 0 ta có: 144x0 chia hết cho 3 => 9+x chia hết cho 3 \(\Rightarrow x\in\left\{0;3;6;9\right\}\)
  • Nếu y = 5 ta có: 144x5 chia hết cho 3 => 14+x chia hết cho 3 \(\Rightarrow x\in\left\{1;4;7\right\}\)

d) 52xy chia hết cho 9,2 và chia 5 dư 4

Do 52xy chia hết 2 và chia 5 dư 4

=> y = 4

Thay y = 4 ta có:

52x4 chia hết cho 9

=> 11 + x chia hết cho 9

=> x = 7

30 tháng 10 2023

Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.

a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:

  • Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2.
  • Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.

Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.

b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:

  • Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9.
  • Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.

Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.

c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:

  • Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8.
  • Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.

Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.

Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.

1 tháng 2 2017

a)Ta có: 10n + 18n - 1 = (10n- 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n+ 18n - 1 chia hết cho 27 (đpcm)

21 tháng 10 2021

a) x=4 ; y=0 

b) x=1 ; y=0 hoặc x=4; 7

 

 

16 tháng 10 2023

Siuuuuuuuuuuuuuuuuuuuuuuu

20 tháng 12 2021

a/ \(\overline{53x8y}⋮2\) => y chẵn

\(\overline{53x8y}\) chia 5 dư 3 \(\Rightarrow y=\left\{3;8\right\}\) do y chẵn => y=8

\(\Rightarrow\overline{53x8y}=\overline{53x88}⋮9\Rightarrow5+3+x+8+8=x+24⋮9\Rightarrow x=3\)

b/ \(\overline{x184y}\) chia 2 có dư => y lẻ

\(\overline{x184y}⋮5\Rightarrow y=\left\{0;5\right\}\) do y lẻ => y=5

\(\Rightarrow\text{​​}\overline{x184y}=\overline{x1845}⋮9\Rightarrow x+1+8+4+5=x+18⋮9\Rightarrow x=\left\{0;9\right\}\)