Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{62}+\frac{1}{62}+\frac{1}{63}\right)\)
\(A=\frac{1}{5}+\frac{1}{15}.3+\frac{1}{63}.3\)
\(A=\frac{1}{5}+\frac{1}{5}+\frac{1}{21}\)
\(A=\frac{47}{105}\)
Mà: \(\frac{47}{105}< \frac{47}{94}=\frac{1}{2}\)
Nên \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)
gọi đó là A đi.
Ta có:
1/13+1/14+1/14< 1/12+1/12+1/12=3/12=1/4
1/61+1/62+1/63< 1/60+1/60+1/60=3/60=1/20
=> 1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/5+1/4+1/20=1/2
=>A< 1/2 (ĐPCM)
Đặt :
\(A=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(A=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Ta thấy :
\(\dfrac{1}{13}< \dfrac{1}{12};\dfrac{1}{14}< \dfrac{1}{12};\dfrac{1}{15}< \dfrac{1}{12}\)
\(\dfrac{1}{61}< \dfrac{1}{60};\dfrac{1}{62}< \dfrac{1}{60};\dfrac{1}{63}< \dfrac{1}{60}\)
\(\Rightarrow A< \dfrac{1}{5}+\left(\dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}\right)+\left(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}\right)\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)
\(\Rightarrow A< \dfrac{1}{2}\rightarrowđpcm\)
~ Chúc bn học tốt ~
TA có:
1/12>1/13
1/12>1/14
1/12>1/15
=>1/12.3=1/4>1/13+1/14+1/15
1/60>1/61
1/60>1/62
1/60>1/63
=>1/60.3=1/20>1/61+1/62+1/63
=>1/5+1/4+1/20> 1/5+1/13+1/14+1/15+1/61+1/62+1/63
=>1/2> 1/5+1/13+1/14+1/15+1/61+1/62+1/63
Ta có:
\(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}
Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
\(đpcm\Leftrightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2