K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ND
5
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
1
DD
Đoàn Đức Hà
Giáo viên
22 tháng 6 2021
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{\left(x-z\right)\left(y-x\right)\left(y+z\right)}{xyz}=\frac{y.\left(-z\right).x}{xyz}=-1\)
DN
0
LT
0
NT
6
31 tháng 3 2015
x-y-z=0
=> x=y+z
y=x-z
-z=y-x
B=(1-z/x)(1-x/y)(1+y/z)
B=((x-z)/x)((y-x)/y)((z+y)/z)
B=(y/x)(-z/y)(x/z)
B=(-z.y.x)/(x.y.z)
B=-1
BD
1
12 tháng 5 2017
Ta có : \(A=\left(1-\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1-\frac{y}{z}\right)=\frac{x-z}{x}\cdot\frac{x+y}{y}\cdot\frac{z-y}{z}\)
\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\) thay vào A ta được :
\(A=\frac{-y}{x}\cdot\frac{z}{y}\cdot\frac{x}{z}==\frac{-y.z.x}{x.y.z}=-1\)
hỏi google
Đề sai rồi phãi là: \(A= ( 1-\frac{z}{x})(1-\frac{x}{y})(1-\frac{y}{z}) \)
\(A=\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{z-y}{z}\right)\)
Từ x-y-z = 0 \(\Rightarrow\) x-z = y
y-x = z
z-y = x
Thay vào A, ta có: \(\left(\frac{y}{x}\right)\left(\frac{z}{y}\right)\left(\frac{x}{z}\right)\)
\(\Rightarrow A = 1 \)