K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

\(A=\left(1-\frac{1}{15}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)...\left(1-\frac{1}{79800}\right)\)

\(A=\frac{14}{15}.\frac{20}{21}.\frac{27}{28}...\frac{209}{210}\)

\(A=\frac{28}{30}.\frac{40}{42}.\frac{54}{56}...\frac{418}{240}\)

\(A=\frac{4.7}{5.6}.\frac{5.8}{6.7}.\frac{6.9}{7.8}...\frac{19.22}{20.21}\)

\(A=\frac{4.5.6...19}{5.6.7...20}.\frac{7.8.9...22}{6.7.8...21}\)

\(A=\frac{4}{20}.\frac{22}{6}\)

\(A=\frac{11}{15}\)

30 tháng 6 2021

E=13/12.14/13....200/199=200/12=50/3

10 tháng 11 2021

a) \(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)

\(\Rightarrow\left(\frac{3}{5}-\frac{2}{3}-1\right).x=\frac{-5}{21}:\frac{1}{7}=\frac{-5}{3}\)

\(\Rightarrow\frac{-16}{15}.x=\frac{-5}{3}\Rightarrow x=\frac{-5}{3}:\frac{-16}{15}=\frac{25}{16}\)

10 tháng 11 2021

b) \(\left(x-\frac{1}{4}\right)^2=\frac{1}{36}\)

\(\Rightarrow\left(x-\frac{1}{4}\right)^2=\left(±\frac{1}{6}\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{4}=\frac{1}{6}\\x-\frac{1}{4}=\frac{-1}{6}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{12}\\x=\frac{1}{12}\end{cases}}\)

30 tháng 6 2021

a) CÓ: A = (1-1/42).(1-1/52).(1-1/62)......(1-1/2002)

               =\(\frac{4^2-1^2}{4^2}\)\(\frac{5^2-1^2}{5^2}\)\(\frac{6^2-1^2}{6^2}\)....... \(\frac{200^2-1^2}{200^2}\)

Ta có công thức sau : a2-b2= a2 -ab+ab-b2 

                                            = a(a-b) + b(a-b)

                                            = (a+b)(a-b)

   ÁP DỤNG CÔNG THỨC TRÊN VÀO BÀI TOÁN TA ĐƯỢC : 

  A=  \(\frac{3.5}{4^2}\)\(\frac{4.6}{5^2}\)\(\frac{5.7}{6^2}\)......\(\frac{199.201}{200^2}\)

    = \(\frac{\left(3.4.5.....199\right)\left(5.6.7....201\right)}{\left(4.5.6......200\right)^2}\)

    =    \(\frac{\left(3.4.5.......199\right)\left(5.6.7.....200.201\right)}{\left(4.5.6.....199.200\right)\left(4.5.6......200\right)}\)

    =   \(\frac{3.201}{200.4}\)

   =  \(\frac{603}{800}\)

b)Từ đề bài ta suy ra : B=\(\frac{1.3}{5.7}\).\(\frac{3.5}{7.9}\)\(\frac{5.7}{9.11}\)...... \(\frac{99.101}{103.105}\)

                                      = \(\frac{1.3^2.5^2.7^2......99^2.101}{5.7^2.9^2.11^2....99^2.101^2.103^2.105}\)

                                      =\(\frac{3^2.5}{101.103^2.105}\)

                                       =\(\frac{3}{7500563}\)