K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

√96 - 6√2/3 + 3/(3+√6) - √10-4√6

= 4√6 - 2√2 + 3(3 - √6)/(3 - √6)(3 + √6) - √10 - 4√6

= -2√2 + 3(3 - √6)/(9 - 6) - √10

= -2√2 + 3 - √6 - √10

NV
20 tháng 8 2021

\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)

\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)

\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)

\(=3-2\sqrt{2}+3+2\sqrt{2}=6\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^2}\)

\(=5-2\sqrt{6}+5+2\sqrt{6}=10\)

\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)

\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}=2\sqrt{5}+4\sqrt{2}\)

a: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)

b: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

\(=3-2\sqrt{2}+3+2\sqrt{2}\)

=6

c: Ta có: \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)

\(=5-2\sqrt{6}+5+2\sqrt{6}\)

=10

d: Ta có: \(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{13-4\sqrt{10}}+\sqrt{53+4\sqrt{90}}\)

\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}\)

\(=2\sqrt{5}+4\sqrt{2}\)

12) \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)

13) \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=3\sqrt{5}-1-2\sqrt{5}+3\)

\(=\sqrt{5}+2\)

25 tháng 7 2021

giải tắt quá á đọc ko hiểu ạ

 

1 tháng 7 2021

\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)

\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)

\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)

\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)

\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)

\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)

\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)

\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)

\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)

a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)

\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)

c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)

\(=\sqrt{5}\)

d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)

\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)

\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)

\(=\sqrt{11+6\sqrt{2}}\)

\(=3+\sqrt{2}\)

2 tháng 10 2021

=5

2 tháng 10 2021

\(=\dfrac{3\left(3-\sqrt{6}\right)}{3}-\sqrt{\left(\sqrt{6}-2\right)^2}+\dfrac{6\sqrt{6}}{3}\\ =3-\sqrt{6}-\sqrt{6}+2+2\sqrt{6}=5\)

4 tháng 8 2021

1.\(\sqrt{1+2\sqrt{5}+5}=\sqrt{\left(1+\sqrt{5}\right)^2}=1+\sqrt{5}\)

2.\(\sqrt{10-4\sqrt{6}}=\sqrt{4-4\sqrt{6}+6}=\sqrt{\left(2-\sqrt{6}\right)^2}=\left|2-\sqrt{6}\right|=\sqrt{6}-2\)       \(\sqrt{15-6\sqrt{6}}=\sqrt{9+6\sqrt{6}+6}=\sqrt{\left(3+\sqrt{6}\right)^2}=3+\sqrt{6}\)

                

=>\(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)=\(3+\sqrt{6}-\sqrt{6}+2\)=5

3. Tương tự bằng :\(8-3\sqrt{6}\)

4 tháng 8 2021

1) \(\sqrt{6+2\sqrt{5}}\) = \(\sqrt{1+2.1.\sqrt{5}+\sqrt{5}^2}\) =  \(\sqrt{\left(1+\sqrt{5}\right)^2}\)

2) \(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)

\(\sqrt{3^2-2.3.\sqrt{6}+\sqrt{6}^2}\) - \(\sqrt{2^2.2.2.\sqrt{6}+\sqrt{6}^2}\)

\(\sqrt{\left(3+\sqrt{6}\right)^2}\)  - \(\sqrt{\left(2+\sqrt{6}\right)^2}\)

\(\left|3+\sqrt{6}\right|\) - \(\left|2+\sqrt{6}\right|\)

= 3 + \(\sqrt{6}\) - 2 + \(\sqrt{6}\)

= 1 + 2\(\sqrt{6}\)

3) \(\sqrt{31-10\sqrt{6}}-\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(\sqrt{5^2-2.5.\sqrt{6}+\sqrt{6}^2}\) - \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(\sqrt{\left(5-\sqrt{6}\right)^2}\) - \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(\left|5-\sqrt{6}\right|\) -  \(\left|3-2\sqrt{6}\right|\)

= 5 - \(\sqrt{6}-3-2\sqrt{6}\)

= 2 - 3\(\sqrt{6}\)

 Chúc bạn học tốt

16 tháng 1 2017

\(\left(1+1+1\right)!=6.\)

\(2+2+2=6\)

\(3.3-3=6\)

\(\sqrt{4}+\sqrt{4}.\sqrt{4}=6\)

\(5+5\div5=6\)

\(6.6\div6=6\)

\(7-7\div7=6\)

\(\sqrt{8+8\div8}!=6\)

\(\sqrt{9}.\sqrt{9}-\sqrt{9}=6\)

\(\sqrt{10-10\div10}!\)