Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=m^2-\left(m^2+2m-6\right)=-2m+6\)
a.
Pt có nghiệm khi \(-2m+6\ge0\Rightarrow m\le3\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2+2m-6\end{matrix}\right.\)
c.
\(x_1x_2=3x_1+3x_2-1\)
\(\Leftrightarrow x_1x_2=3\left(x_1+x_2\right)-1\)
\(\Leftrightarrow m^2+2m-6=3.2m-1\)
\(\Leftrightarrow m^2-4m-5=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=5>3\left(loại\right)\end{matrix}\right.\)
a thay vào mà tính, dễ rồi nên mình ko làm nữa nhé
b, Để phương trình có 2 nghiệm phân biệt thì delta > 0
hay \(4m^2-4\left(m-2\right)\left(m-4\right)=4m^2-4\left(m^2-6m+8\right)=6m-8>0\)
\(\Leftrightarrow-8>-6m\Leftrightarrow m>\dfrac{4}{3}\)
c, Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-4}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-2}{m-4}\end{matrix}\right.\)
Lại có: \(\left(x_1+x_2\right)^2=\dfrac{4m^2}{\left(m-4\right)^2}\Rightarrow x_1^2+x_2^2=\dfrac{4m^2}{\left(m-4\right)^2}-2x_1x_2\)
\(=\dfrac{4m^2}{\left(m-4\right)^2}-\dfrac{2m-4}{m-4}=\dfrac{4m^2-\left(2m-4\right)\left(m-4\right)}{\left(m-4\right)^2}\)
\(=\dfrac{4m^2-2m^2+12m-16}{\left(m-4\right)^2}=\dfrac{2m^2+12m-16}{\left(m-4\right)^2}\)
(căn x1+căn x2)^2=x1+x2+2*căn x1x2
=12+2*căn 4=16
=>căn x1+căn x2=4
\(T=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}=\dfrac{12^2-2\cdot4}{4}=34\)
\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)
với mọi m => pt có 2 nghiệm phân biệt x1 và x2
theo Viet (điều kiện m > -1/2)
\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)
\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)
dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)
\(\Delta'=m^2+9>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo hệ thức Viet:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-9\end{matrix}\right.\)
Mặt khác do \(x_1\) là nghiệm nên: \(x_1^2-2mx_1-9=0\)
\(\Rightarrow x_1^2=2mx_1+9\)
\(\Rightarrow x_1^3=2mx_1^2+9x_1\)
Thế vào bài toán:
\(x_1^3+9x_2=0\)
\(\Leftrightarrow2mx_1^2+9x_1+9x_2=0\)
\(\Leftrightarrow2mx_1^2+9\left(x_1+x_2\right)=0\)
\(\Leftrightarrow2mx_1^2+18m=0\)
\(\Leftrightarrow2m\left(x_1^2+9\right)=0\)
\(\Leftrightarrow m=0\) (do \(x_1^2+9>0;\forall x_1\))
Lời giải:
Theo định lý Viet:
$x_1+x_2=19$
$x_1x_2=9$
Khi đó:
\(x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)
\(=(\sqrt{x_1}+\sqrt{x_2})(19-\sqrt{9})=16(\sqrt{x_1}+\sqrt{x_2})\)
\(=16\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=16\sqrt{19+2\sqrt{9}}=80\)
\(x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=19^2-2.9=343\)
$\Rightarrow P=\frac{80}{343}$
a: Δ=(-2m)^2-4*(m+2)
=4m^2-4m-8
Để PT có hai nghiệm ko âm thì 4m^2-4m-8>=0 và 2m>0 và m+2>0
=>m>0 và m^2-m-2>=0
=>m>=2
b: \(E^2=x_1+x_2+2\sqrt{x_1x_2}=2m+2\sqrt{m+2}\)
=>\(E=\sqrt{2m+2\sqrt{m+2}}\)