Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 2mx + m2 -2 = 0
\(\Delta\)= 4m2 - 4 (m2 -2)
= 4m2 - 4m2 + 8
= 8 >0
\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{2m+\sqrt{8}}{2}\)= m +\(\sqrt{2}\)
x2 = m - \(\sqrt{2}\)
ta có \(|\)x13 - x23 \(|\)= 10\(\sqrt{2}\)
\(|\)(m +\(\sqrt{2}\))3 - (m - \(\sqrt{2}\))3 |= 10 \(\sqrt{2}\)
giải nốt pt này là ra đấy nha
#mã mã#
Đầu tiên cần tìm điều kiện của m để phương trình có 2 nghiệm nha bn
khi đó
\(x_1+x_2=2m\)
\(x_1.x_2=m^2-2\)
Ta có |\(x_1^3-x_2^3\)|=10\(\sqrt{2}\)
|(x1-x2)(x12-x1.x2+x22)|=10\(\sqrt{2}\)
(x1-x2)2. ((x1+x2)2-x1.x2)2=200 ( bước này là bình phương 2 vế nha bn )
(x12+x22-2x1x2) (4m2-m2+2)=200
((x1+x2)2-4x1x2)(3m2+2)=200
(4m2-4m2+8)(3m2+2)=200
3m2 =23
=> m=\(\sqrt{\frac{23}{3}}\)hoặc m=\(-\sqrt{\frac{23}{3}}\)
rồi bn đối chiếu điều kiện của m ở trên để phương trình có 2 no phân biệt nha
( bài mk lm dài có thế có sai sót ...mong bn thông cảm)
\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)
(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))
Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)
\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\)
\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)
Thế vào \(x_1x_2=2m\)
\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)
\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)
\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))
\(\Delta'=m^2+9>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo hệ thức Viet:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-9\end{matrix}\right.\)
Mặt khác do \(x_1\) là nghiệm nên: \(x_1^2-2mx_1-9=0\)
\(\Rightarrow x_1^2=2mx_1+9\)
\(\Rightarrow x_1^3=2mx_1^2+9x_1\)
Thế vào bài toán:
\(x_1^3+9x_2=0\)
\(\Leftrightarrow2mx_1^2+9x_1+9x_2=0\)
\(\Leftrightarrow2mx_1^2+9\left(x_1+x_2\right)=0\)
\(\Leftrightarrow2mx_1^2+18m=0\)
\(\Leftrightarrow2m\left(x_1^2+9\right)=0\)
\(\Leftrightarrow m=0\) (do \(x_1^2+9>0;\forall x_1\))