Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)
\(\frac{3}{7}\left(\frac{7}{13}-\frac{3}{7}\right)-\frac{7}{13}\left(-\frac{3}{7}+\frac{26}{49}\right)\)
\(=\frac{3}{7}\left(\frac{49}{91}-\frac{39}{91}\right)-\frac{7}{13}\left(-\frac{21}{49}+\frac{26}{49}\right)\)
\(=\frac{3}{7}.\frac{10}{91}-\frac{7}{13}.\frac{5}{49}\)
\(=\frac{30}{637}-\frac{5}{91}=\frac{30}{637}-\frac{35}{637}=\frac{-5}{637}\)
\(7A=7^2+7^3+...+7^{12}\)
\(\Leftrightarrow A=\dfrac{7^{12}-7}{6}\)
\(7A=7^2+7^3+...+7^{10}+7^{12}\\ 7A-A=7^2+7^3+...+7^{10}+7^{12}-7-7^2-...-7^9-7^{11}\\ 6A=7^{12}-7^{11}+7^{10}-7\\ A=\dfrac{7^{12}-7^{11}+7^{10}-7}{6}\)
Ta có A= -1+7+(-72)+73+(-74)+....+72008 +72008
A.7=[-7+72+(-73)+74+....+72009 +72009] + [ -1+7+(-72)+73+(-74)+....+72008 +72008]
A.7=[72009.2+(-1) +72008] :7
b;c làm tương tự
`#3107.101107`
\(\dfrac{7^{40}\cdot5-7^{39}\cdot8}{7^{39}\cdot3^3}\)
\(=\dfrac{7^{39}\cdot\left(7\cdot5-8\right)}{7^{39}\cdot3^3}\\ =\dfrac{7\cdot5-8}{3^3}\\ =\dfrac{35-8}{27}\\ =\dfrac{27}{27}\\ =1\)