K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 × 3 mu x + 20 × 3 mu x = 3 mu 25

24 tháng 10 2016

\(1+^2+4^3+......+4^{10}+4^{11}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+.....+\left(4^{10}+4^{11}\right)\)

Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 5. Vậy tổng \(1+^2+4^3+......+4^{10}+4^{11}\) chia hết cho 5

\(7+7^2+7^3+.....+7^{102}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+....+\left(7^{101}+7^{102}\right)\)

Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 8. Vậy tổng \(7+7^2+7^3+.....+7^{102}\) chia hết cho 8

24 tháng 10 2016

a, \(1+4+4^2+...+4^{11}\)

Đặt : \(S=1+4+4^2+...+4^{11}\)

Ta có : Số số hạng của dãy số S chính là số số hạng của dãy số cách đều từ 0 --> 11 mỗi số cách nhau 1 đơn vị

=> Số số hạng của S là : \(\frac{11-0}{1}+1=12\) ( số hạng )

Vậy ta có số nhóm là :

12 : 2 = 6 ( nhóm ) :

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{10}+4^{11}\right)\) ( 6 nhóm )

\(\Rightarrow S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{10}\left(1+4\right)\)

\(\Rightarrow S=1.5+4^2.5+...+4^{10}.5\)

\(\Rightarrow S=\left(1+4^2+...+4^{10}\right).5\)

Mà : \(1+4^2+...+4^{10}\in N\Rightarrow S⋮5\)

---------

Tương tự để chứng minh S chia hết cho 21 ta có số nhóm là :

12 : 3 = 4 ( nhóm )

\(S=\left(1+4+4^2\right)+...+\left(4^9+4^{10}+4^{10}\right)\) ( 4 nhóm )

\(\Rightarrow S=\left(1+4+4^2\right)+...+4^9\left(1+4+4^2\right)\)

\(\Rightarrow S=1.21+...+4^9.21\)

\(\Rightarrow S=\left(1+...+4^9\right).21\)

Mà : \(1+...+4^9\in N\Rightarrow S⋮21\)

b, \(7+7^2+7^3+...+7^{102}\)

Đặt : \(M=7+7^2+7^3+...+7^{102}\)

Ta có : Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 --> 102 mỗi số cách nhau 1 đơn vị

=> Số số hạng của M là : \(\frac{102-1}{1}+1=102\) ( số hạng )

Vậy có tất cả số nhóm là :

102 : 2 = 51 ( nhóm )

\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{101}+7^{102}\right)\)

\(\Rightarrow M=\left(7+7^2\right)+7^2\left(7+7^2\right)+...+7^{100}\left(7+7^2\right)\)

\(\Rightarrow M=1.56+7^2.56+...+7^{100}.56\)

\(\Rightarrow M=\left(1+7^2+...+7^{100}\right).56\)

Vì : 56 = 8.7 . Mà : \(1+7^2+...+7^{100}\in N\Rightarrow M⋮8\)

2 tháng 10 2015

Bài 1:

Ta có: abcd=100ab+cd=99ab+(ab+cd)

Vì 99 chia hết cho 99 =)ab chia hết cho 99=>(ab+cd) chia hết cho 99

 Hay abcd chia hết cho 99;(ab+cd) chia hết cho 99

Vậy nếu abcd chia hết cho 99 thì (ab+cd) chia hết cho 99 và ngược lại

13 tháng 9 2018

4 . 5 mu 2 -3 .2 mu 3

7 × 3 mu x + 20 × 3 mu x = 3 mu 25

4 tháng 7 2015

a) 76 + 75 - 74=74.72+75.7-74.1 =74.(72+7-1)=74.55

vì 55 chia hết cho 11 nên 74.55 cũng chia hết cho 11

=> 76 + 75 - 74 chia hết cho 11

b)278 - 321=(33)8-321=324-321=321.33-321.1=321.(33-1)=321.26

=>278 - 321 chia het cho 26

c) 812 - 2 33 - 230

=(23)12-233-230=236-233-230=230.26-230.23-230.1=230.(26-23-1)

                                                                     =230.55

=> 812 - 2 33 - 230 chia het cho 55

23 tháng 11 2015

a) 76 + 75 - 74 = 74.(72 + 7 -1) = 74.5.11

Vậy chia hết cho 11 

6 tháng 2 2021
Bài 2 A,2x-2^3.3^2=138 2x-8.9 =138 2x-72 =138 2x =138+72 2x =210 x =210:2 x =105 b,(6x-3^4).7^3=3.7^4 (6x-81).343 =3.2401 (6x-81).343 =7203 (6x-81) =7203:343 (6x-81) =21 6x =21+81 6x =102 x =102:6 x =17
24 tháng 10 2016

hinh nhu de bai nay sai

27 tháng 10 2017

Bài 1 :

a) (2x + 1)3 = 125

=> (2x + 1)3 = 53

=> 2x + 1 = 5

=> 2x = 5 - 1

=> 2x = 4

=> x = 2

b) (x - 5)4 = (x - 5)6

Với hai mũ khác nhau , ta chỉ có thể tìm được giá trị biểu thức bằng 1 hoặc 0 (giá trị của chúng bằng nhau)

+) (x - 5)4 = (x - 5)6 = 0

=> (x - 5)4 = 0

=> (x - 5)4 = 04

=> x - 5 = 0 => x = 0 + 5 = 5

+) (x - 5)4 = (x- 5)6 = 1

=> (x - 5)4 = 1

=> (x - 5)4 = 14

=> x - 5 = 1

=> x = 1 + 5

=> x = 6

Bài 4 :

a3 . a9 = a3 + 9 = a12

(a5)7.(a6)4 .a12 = a35 . a24 . a12 = a35 + 24 + 12 = a71

4.52 - 2.32 = 4.25 - 2.9

= 100 - 18

= 82

26 tháng 10 2017

mong cac ban giup, minh can gap lam,tuy minh trinh bay hoi xau nhung mong cac ban giup